Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(7): 7479-7487, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30672685

RESUMO

The severe water contamination caused by oil leakage is calling for low-cost and high-performance absorbent materials for selective oil removal. In this study, a scalable green method was proposed to produce polypropylene (PP)/poly(tetrafluoroethylene) (PTFE) composite foams via conventional processing techniques including twin-screw extrusion and supercritical carbon dioxide foaming. To produce the superhydrophobic foam, micro- and nanosized PTFE particles were melt blended with PP and subsequently foamed. Ascribed to the nanofibrillation of microsized PTFE during processing, the fabricated foam exhibited a special highly porous structure with PTFE nanofibrils and nanoparticles uniformly distributed on the pore surfaces within the PP matrix, which resulted in a remarkably high water contact angle of 156.8° and a low contact angle hysteresis of 1.9°. Unlike traditional surface-modified superhydrophobic absorbers, the foams prepared are entirely superhydrophobic, which means that they remain superhydrophobic when being fractured or cut. Moreover, they are highly durable and maintained the superhydrophobicity when subjected to ultrasonication and mechanical sanding. When used in selective oil absorption, the durable foams exhibited excellent absorption efficiency and high stability in repetitive and long-term use. These advantages make the PP/PTFE foam a promising superabsorbent material for water remediation.

2.
ACS Appl Mater Interfaces ; 10(24): 20897-20909, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29863322

RESUMO

Integrating multifunctionality such as adhesiveness, stretchability, and self-healing ability on a single hydrogel has been a challenge and is a highly desired development for various applications including electronic skin, wound dressings, and wearable devices. In this study, a novel hydrogel was synthesized by incorporating polydopamine-coated talc (PDA-talc) nanoflakes into a polyacrylamide (PAM) hydrogel inspired by the natural mussel adhesive mechanism. Dopamine molecules were intercalated into talc and oxidized, which enhanced the dispersion of talc and preserved catechol groups in the hydrogel. The resulting dopamine-talc-PAM (DTPAM) hydrogel showed a remarkable stretchability, with over 1000% extension and a recovery rate over 99%. It also displayed strong adhesiveness to various substrates, including human skin, and the adhesion strength surpassed that of commercial double-sided tape and glue sticks, even as the hydrogel dehydrated over time. Moreover, the DTPAM hydrogel could rapidly self-heal and regain its mechanical properties without needing any external stimuli. It showed excellent biocompatibility and improved cell affinity to human fibroblasts compared to the PAM hydrogel. When used as a strain sensor, the DTPAM hydrogel showed high sensitivity, with a gauge factor of 0.693 at 1000% strain, and was capable of monitoring various human motions such as the bending of a finger, knee, or elbow and taking a deep breath. Therefore, this hydrogel displays favorable attributes and is highly suitable for use in human-friendly biological devices.


Assuntos
Hidrogéis/química , Adesivos , Humanos , Movimento (Física) , Cicatrização
3.
ACS Appl Mater Interfaces ; 7(12): 6955-65, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761418

RESUMO

In this work, scaffolds with a shish-kebab (SK) structure formed by poly(ε-caprolactone) (PCL) nanofibers and chitosan-PCL (CS-PCL) copolymers were prepared via electrospinning and subsequent crystallization for bone tissue engineering applications. The aim of this study was to introduce nanosized topography and the high biocompatibility of chitosan onto PCL nanofibers to enhance cell affinity to PCL scaffolds. CS-PCL copolymers with various ratios were synthesized, and then spontaneously crystallized as kebabs onto the electrospun PCL fibers, which acted as shishes. Scanning electron microscopy (SEM) results demonstrated that the copolymer with PCL to chitosan ratio of 8.8 could hierarchically decorate the PCL nanofibers and formed well-shaped kebabs on the PCL nanofiber surface. Water contact angle tests and biomimetic activity experiments revealed that the shish-kebab scaffolds with CS-PCL kebabs (PCL-SK(CS-PCL(8.8))) showed enhanced hydrophilicity and mineralization ability compared with smooth PCL and PCL-SK(PCL) shish-kebab scaffolds. Osteoblast-like MG63 cells cultured on the PCL-SK(CS-PCL(8.8)) scaffolds showed optimizing cell attachment, cell viability, and metabolic activity, demonstrating that this kind of scaffold has potential applications in bone tissue engineering.


Assuntos
Osso e Ossos/citologia , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Nanofibras/química , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Adesão Celular , Materiais Revestidos Biocompatíveis/síntese química , Poliésteres/síntese química , Porosidade
4.
Mater Sci Eng C Mater Biol Appl ; 49: 40-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686925

RESUMO

Fabrication of small diameter vascular grafts plays an important role in vascular tissue engineering. In this study, thermoplastic polyurethane (TPU)/graphene oxide (GO) scaffolds were fabricated via electrospinning at different GO contents as potential candidates for small diameter vascular grafts. In terms of mechanical and surface properties, the tensile strength, Young's modulus, and hydrophilicity of the scaffolds increased with an increase of GO content while plasma treatment dramatically improved the scaffold hydrophilicity. Mouse fibroblast (3T3) and human umbilical vein endothelial cells (HUVECs) were cultured on the scaffolds separately to study their biocompatibility and potential to be used as vascular grafts. It was found that cell viability for both types of cells, fibroblast proliferation, and HUVEC attachment were the highest at a 0.5wt.% GO loading whereas oxygen plasma treatment also enhanced HUVEC viability and attachment significantly. In addition, the suture retention strength and burst pressure of tubular TPU/GO scaffolds containing 0.5wt.% GO were found to meet the requirements of human blood vessels, and endothelial cells were able to attach to the inner surface of the tubular scaffolds. Platelet adhesion tests using mice blood indicated that vascular scaffolds containing 0.5% GO had low platelet adhesion and activation. Therefore, the electrospun TPU/GO tubular scaffolds have the potential to be used in vascular tissue engineering.


Assuntos
Grafite , Poliuretanos , Alicerces Teciduais , Células 3T3 , Animais , Plaquetas/citologia , Adesão Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Óxidos , Análise Espectral Raman , Resistência à Tração
5.
J Biomed Mater Res B Appl Biomater ; 103(5): 960-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25176285

RESUMO

Soft and hard thermoplastic polyurethane (TPU) and their blends were electrospun to fabricate nanofibrous scaffolds with various properties in order to investigate the substrate property effects on cellular response. The scaffolds were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, water contact angle tests, and protein absorption tests. It was found that the hard segment content in the scaffold increased with the hard TPU ratio, which resulted in improved hydrophobicity and decreased over all protein absorption. 3T3 fibroblasts were cultured on those scaffolds to investigate the cellular response. On soft TPU scaffolds, the cells formed were round in shape and aggregated into clusters. However, on hard TPU scaffolds, the cells exhibited a spindle shape and spread out on the scaffolds, indicating preferred cell-substrate interaction. The cell viability and proliferation of cells on hard scaffolds were higher than on soft scaffolds and on 50% hard/50% soft scaffolds.


Assuntos
Forma Celular , Nanofibras/química , Poliuretanos/química , Alicerces Teciduais/química , Células 3T3 , Animais , Camundongos
6.
Carbohydr Polym ; 117: 941-949, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498720

RESUMO

In this study, parallel-aligned poly(propylene carbonate) (PPC) microfibers with a fiber diameter of 1.48±0.42 µm were prepared by electrospinning and modified by oxygen plasma treatment. Next, chitosan nanofibers with a fiber diameter size of 278±98 nm were introduced into the PPC fiber mats by freeze drying. Morphological analyses showed that the PPC scaffolds treated with 0.05 mg/ml chitosan solution provided the best micro and nanofiber structure with abundant chitosan nanofibers but without the formation of films. Surface chemical properties were analyzed by X-ray photoelectron spectroscopy (XPS). The initial water contact angle of the scaffolds decreased from 122.3±0.4° for neat PPC scaffolds to 53.8±1.6° for scaffolds with plasma treatment and chitosan nanofibers. The mechanical properties of the scaffolds were affected by plasma treatment with Young's modulus experiencing a reduction of 63%. Meanwhile, Young's modulus experienced a 26% improvement after the introduction of chitosan nanofibers. Fibroblast cells were cultured on the scaffolds to study the effects of both the plasma treatment and the introduction of chitosan nanofibers on cell adhesion, proliferation, and morphology. The scaffolds with PPC microfibers and chitosan nanofibers showed a superior cell response in terms of cell attachment, cell proliferation, and cell-scaffold interactions over the other scaffolds.


Assuntos
Quitosana/química , Eletricidade , Microtecnologia , Nanofibras/química , Propano/análogos & derivados , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Liofilização , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Camundongos , Células NIH 3T3 , Oxigênio/química , Gases em Plasma/química , Propano/química , Molhabilidade
7.
J Biomed Mater Res A ; 103(2): 593-603, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24771704

RESUMO

Unidirectionally and orthogonally aligned thermoplastic polyurethane (TPU) nanofibers were electrospun using a custom-built electrospinning device. The unidirectionally aligned fibers were collected using two parallel copper plates, and the orthogonally aligned fibers were collected using two orthogonal sets of parallel copper plates with alternate negative connections. Carbon nanotubes (CNT) and polyacrylic acid (PAA) were added to modify the polymer solution. It was found that both CNT and PAA were capable of increasing solution conductivity. The TPU/PAA fiber showed the highest degree of fiber orientation with more than 90% of the fibers having an orientation angle between -10° and 10° for unidirectionally aligned fibers, and for orthogonally aligned fibers, the orientation angle of 50% fibers located between -10° and 10° and 48% fibers located between 80° and 100°. Viability assessment of 3T3 fibroblasts cultured on TPU/PAA fibers suggested that the material was cytocompatible. The cells' orientation and migration direction closely matched the fibers' orientation. The cell migration velocity and distance were both enhanced with the guidance of fibers compared with cells cultured on random fibers and common tissue culture plastic. Controlling cell migration velocity and directionality may provide ways to influence differentiation and gene expression and systems that would allow further exploration of wound repair and metastatic cell behavior.


Assuntos
Resinas Acrílicas/química , Movimento Celular , Nanofibras/química , Nanotubos de Carbono/química , Células 3T3 , Animais , Camundongos
8.
J Biomed Mater Res B Appl Biomater ; 102(7): 1434-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24574168

RESUMO

Thermoplastic polyurethane (TPU)/hydroxyapatite (HA) scaffolds were fabricated via electrospinning. The effects of TPU properties and HA particle size on scaffold physical properties and osteoblast-like cell performance were investigated. It was found that the addition of micro-HA (mHA), which was inlayed in the fiber, decreased the electrospun fiber diameter. On the contrary, nano-HA (nHA), which was either embedded or existed inside of the fiber, increased the fiber diameter for both soft and hard TPUs. The soft TPU had a much lower Young's modulus and higher strain-at-break than the hard TPU. The addition of both mHA and nHA decreased the tensile properties; this decrease was more significant with mHA. The cells on the hard scaffolds actively proliferated and migrated compared to those on the soft scaffolds. On the other hand, cells on the soft scaffolds more effectively induced osteogenesis of human mesenchymal stem cells (hMSCs) than those on the hard scaffolds. In addition, our data suggest that the soft scaffolds with supplementation of nHA further enhanced osteogenesis of hMSCs compared to those without nHA. The soft TPU scaffolds containing nano-HA have the potential to be used in bone tissue engineering applications.


Assuntos
Substitutos Ósseos , Calcificação Fisiológica/efeitos dos fármacos , Durapatita , Células-Tronco Mesenquimais/metabolismo , Poliuretanos , Engenharia Tecidual , Durapatita/química , Durapatita/farmacologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Tamanho da Partícula , Poliuretanos/química , Poliuretanos/farmacologia
9.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4767-76, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094186

RESUMO

Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Ácido Láctico/química , Polímeros/química , Poliuretanos/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Poliésteres , Reologia , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...