Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985705

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Quercetina/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química
2.
Hortic Res ; 10(3): uhad014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968183

RESUMO

Hydrogen sulfide (H2S) is involved in multiple processes during plant growth and development. D-cysteine desulfhydrase (DCD) can produce H2S with D-cysteine as the substrate; however, the potential developmental roles of DCD have not been explored during the tomato lifecycle. In the present study, SlDCD2 showed increasing expression during fruit ripening. Compared with the control fruits, the silencing of SlDCD2 by pTRV2-SlDCD2 accelerated fruit ripening. A SlDCD2 gene-edited mutant was constructed by CRISPR/Cas9 transformation, and the mutant exhibited accelerated fruit ripening, decreased H2S release, higher total cysteine and ethylene contents, enhanced chlorophyll degradation and increased carotenoid accumulation. Additionally, the expression of multiple ripening-related genes, including NYC1, PAO, SGR1, PDS, PSY1, ACO1, ACS2, E4, CEL2, and EXP was enhanced during the dcd2 mutant tomato fruit ripening. Compared with the wild-type fruits, SlDCD2 mutation induced H2O2 and malondialdehyde (MDA) accumulation in fruits, which led to an imbalance in reactive oxygen species (ROS) metabolism. A correlation analysis indicated that H2O2 content was strongly positively correlated with carotenoids content, ethylene content and ripening-related gene expression and negatively correlated with the chlorophyll content. Additionally, the dcd2 mutant showed earlier leaf senescence, which may be due to disturbed ROS homeostasis. In short, our findings show that SlDCD2 is involved in H2S generation and that the reduction in endogenous H2S production in the dcd2 mutant causes accelerated fruit ripening and premature leaf senescence. Additionally, decreased H2S in the dcd2 mutant causes excessive H2O2 accumulation and increased ethylene release, suggesting a role of H2S and SlDCD2 in modulating ROS homeostasis and ethylene biosynthesis.

3.
Angew Chem Int Ed Engl ; 61(45): e202211211, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111538

RESUMO

The application of Suzuki-Miyaura coupling reaction to forge the atropisomeric biaryls has seen remarkable progress but exploration of this chemistry to directly forge chiral C(aryl)-C(alkene) axis is underdeveloped. The replacement of arene substrates by alkenes intensifies the challenges in terms of reactivity, configurational atropostability of product and selectivity control. By meticulous ligand design and fine-tuning of reaction parameters, we identified a highly active 3,3'-triphenylsilyl-substituted phosphite ligand to realize arene-alkene Suzuki-Miyaura coupling of hindered aryl halides and vinyl boronates under very mild conditions. The axially chiral acyclic aryl-alkenes were generated in commendable efficiency, enantioselectivity and E/Z selectivity.


Assuntos
Alcenos , Paládio , Ligantes , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...