Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 10(1): 13, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907884

RESUMO

BACKGROUND: Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis. We hypothesized that pericytes, a group of pluripotent cells that maintain vascular integrity and tension, are protective against sepsis via regulating vascular reactivity and permeability. METHODS: We conducted a series of in vivo experiments using wild-type (WT), platelet-derived growth factor receptor beta (PDGFR-ß)-Cre + mT/mG transgenic mice and Tie2-Cre + Cx43flox/flox mice to examine the relative contribution of pericytes in sepsis, either induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. In a separate set of experiments with Sprague-Dawley (SD) rats, pericytes were depleted using CP-673451, a selective PDGFR-ß inhibitor, at a dosage of 40 mg/(kg·d) for 7 consecutive days. Cultured pericytes, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were used for mechanistic investigations. The effects of pericytes and pericyte-derived microvesicles (PCMVs) and candidate miRNAs on vascular reactivity and barrier function were also examined. RESULTS: CLP and LPS induced severe injury/loss of pericytes, vascular hyporeactivity and leakage (P < 0.05). Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization (P < 0.05). Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels (P < 0.05). Additionally, PCMVs transferred miR-145 and miR-132 to VSMCs and VECs, respectively, exerting a protective effect on vascular reactivity and barrier function after sepsis (P < 0.05). miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2 (Sphk2)/sphingosine-1-phosphate receptor (S1PR)1/phosphorylation of myosin light chain 20 pathway, whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways. CONCLUSIONS: Pericytes are protective against sepsis through regulating vascular reactivity and barrier function. Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.


Assuntos
MicroRNAs , Sepse , Animais , Camundongos , Ratos , Permeabilidade Capilar/fisiologia , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/farmacologia , Pericitos/metabolismo , Ratos Sprague-Dawley
2.
Int J Nanomedicine ; 18: 693-709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816330

RESUMO

Background: Intestinal barrier dysfunction is an important complication of sepsis, while the treatment is limited. Recently, parthenolide (PTL) has attracted much attention as a strategy of sepsis, but whether nano parthenolide (Nano PTL) is therapeutic in sepsis-induced intestinal barrier dysfunction is obscured. Methods: In this study, cecal ligation and puncture (CLP)-induced sepsis rats and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells (IECs) were used to investigate the effect of PTL on intestinal barrier dysfunction. Meanwhile, we synthesized Nano PTL and compared the protective effect of Nano PTL with ordinary PTL on intestinal barrier function in septic rats and IECs. Network pharmacology and serotonin 2A (5-HTR2A) inhibitor were used to explore the mechanism of PTL on the intestinal barrier function of sepsis. Results: The encapsulation rate of Nano PTL was 95±1.5%, the drug loading rate was 11±0.5%, and the average uptake rate of intestinal epithelial cells was 94%. Ordinary PTL and Nano PTL improved the survival rate and survival time of septic rats, reduced the mean arterial pressure and the serum level of inflammatory cytokines, and protected the liver and kidney functions in vivo, and increased the value of transmembrane resistance (TEER) reduced the reactive oxygen species (ROS) and apoptosis in IECs in vitro through 5-HTR2A. Nano PTL had better effect than ordinary PTL. Conclusion: Ordinary PTL and Nano PTL can protect the intestinal barrier function of septic rats by inhibiting apoptosis and ROS through up-regulating 5-HTR2A, Nano PTL is better than ordinary PTL.


Assuntos
Mucosa Intestinal , Sepse , Ratos , Animais , Espécies Reativas de Oxigênio/farmacologia , Intestinos , Sepse/tratamento farmacológico , Apoptose
3.
Shock ; 57(4): 526-535, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628454

RESUMO

BACKGROUND: Hemorrhagic shock is the important factor for causing death of trauma and war injuries. However, pathophysiological characteristics and underlying mechanism in hemorrhagic shock with hot environment remain unclear. METHODS: Hemorrhagic shock in hot environment rat model was used to explore the changes of mitochondrial and vital organ functions, the variation of the internal environment, stress factors, and inflammatory factors; meanwhile, the suitable treatment was further studied. RESULTS: Above 36°C hot environment induced the increase of core temperature of rats, and the core temperature was not increased in 34°C hot environment, but the 34°C hot environment aggravated significantly hemorrhagic shock induced mortality. Further study showed that the mitochondrial functions of heart, liver, and kidney were more damaged in hemorrhagic shock rats with 34°C hot environment as compared with room environment. Moreover, the results showed that in hemorrhagic shock rats with hot environment, the blood concentration of Na+, K+, and plasma osmotic pressure, the expression of inflammatory factors tumor necrosis factor-α and interleukin-6 in the serum, as well as the stress factors Adrenocorticotropic Hormone and Glucocorticoid were all notably enhanced; and acidosis was more serous; oxygen supply and oxygen consumption were remarkably decreased. In addition, the present study demonstrated that mild hypothermia (10°C) fluid resuscitation could significantly improve the survival rate in hemorrhagic shock rats with hot environment as compared with normal temperature fluid resuscitation. CONCLUSIONS: Hot environment accelerated the death of hemorrhagic shock rats, which was related to the disorder of internal environment, the increase of inflammatory and stress factors. Furthermore, moderate hypothermic (10°C) fluid resuscitation was suitable for the treatment of hemorrhagic shock in hot environment.


Assuntos
Hipotermia Induzida , Hipotermia , Choque Hemorrágico , Animais , Hidratação/métodos , Hipotermia Induzida/métodos , Ratos , Ressuscitação/métodos
4.
Front Physiol ; 12: 690190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646146

RESUMO

Hypoxia is the major cause of acute altitude hypoxia injury in acute mountain sickness (AMS). YQ23 is a kind of novel bovine-derived, cross-linked hemoglobin-based oxygen carrier (HBOC). It has an excellent capacity for carrying and releasing oxygen. Whether YQ23 has a protective effect on the acute altitude hypoxia injury in AMS is unclear. In investigating this mechanism, the hypobaric chamber rabbit model and plain-to-plateau goat model were used. Furthermore, this study measured the effects of YQ23 on the ability of general behavior, general vital signs, Electrocardiograph (ECG), hemodynamics, vital organ injury markers, and blood gases in hypobaric chamber rabbits and plain-to-plateau goats. Our results showed that the ability of general behavior (general behavioral scores, GBS) (GBS: 18 ± 0.0 vs. 14 ± 0.5, p < 0.01) and the general vital signs weakened [Heart rate (HR, beats/min): 253.5 ± 8.7 vs. 301.1 ± 19.8, p < 0.01; Respiratory rate (RR, breaths/min): 86.1 ± 5.2 vs. 101.2 ± 7.2, p < 0.01] after exposure to plateau environment. YQ23 treatment significantly improved the ability of general behavior (GBS: 15.8 ± 0.5 vs. 14.0 ± 0.5, p < 0.01) and general vital signs [HR (beats/min): 237.8 ± 24.6 vs. 301.1 ± 19.8, p < 0.01; RR (breaths/min): 86.9 ± 6.6 vs. 101.2 ± 7.2, p < 0.01]. The level of blood PaO2 (mmHg) (115.3 ± 4.7 vs. 64.2 ± 5.6, p < 0.01) and SaO2(%) (97.7 ± 0.7 vs. 65.8 ± 3.1, p < 0.01) sharply decreased after exposure to plateau, YQ23 treatment significantly improved the blood PaO2 (mmHg) (97.6 ± 3.7 vs. 64.2 ± 5.6, p < 0.01) and SaO2(%) (82.7 ± 5.2 vs. 65.8 ± 3.1, p < 0.01). The cardiac ischemia and injury marker was increased [troponin (TnT, µg/L):0.08 ± 0.01 vs. 0.12 ± 0.02, p < 0.01], as well as the renal [blood urea nitrogen (BUN, mmol/L): 6.0 ± 0.7 vs. 7.3 ± 0.5, p < 0.01] and liver injury marker [alanine aminotransferase (ALT, U/L): 45.8 ± 3.6 vs. 54.6 ± 4.2, p < 0.01] was increased after exposure to a plateau environment. YQ23 treatment markedly alleviated cardiac ischemia [TnT (µg/L):0.10 ± 0.01 vs 0.12 ± 0.02, p < 0.01] and mitigated the vital organ injury. Besides, YQ23 exhibited no adverse effects on hemodynamics, myocardial ischemia, and renal injury. In conclusion, YQ23 effectively alleviates acute altitude hypoxia injury of AMS without aside effects.

5.
J Cardiovasc Pharmacol ; 78(2): 280-287, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050090

RESUMO

ABSTRACT: Aquaporins (AQPs) are a group of membrane proteins related to water permeability. Studies have shown that AQPs play a vital role in various diseases. Whether AQPs participate in regulating vascular permeability after sepsis and whether the subtype of AQPs is related are unknown. Ss-31, as a new antioxidant, had protective effects on a variety of diseases. However, whether Ss-31 has a protective effect on pulmonary vascular permeability in sepsis and whether its effect is related to AQPs are unclear. Using the cecum ligation perforation-induced septic rat and LPS-treated pulmonary vein endothelial cells, the role of AQPs in the regulation of the permeability of pulmonary vascular and its relationship to Ss-31 were studied. The results showed that the pulmonary vascular permeability significantly increased after sepsis, meanwhile the expressions of AQP3, 4, and 12 increased. Among those, the AQP3 was closely correlated with pulmonary vascular permeability. The inhibition of AQP3 antagonized the increase of the permeability of monolayer pulmonary vein endothelial cells. Further study showed that the expression of caveolin-1 (Cav-1) increased and occludin decreased after sepsis. The inhibition of AQP3 antagonized the decrease of Cav-1 and the increase of occludin in sepsis. Antioxidant Ss-31 decreased the expression of AQP3 and ROS levels. At the same time, Ss-31 improved pulmonary vascular permeability and prolonged survival of sepsis rats. In conclusion, AQP3 participates in the regulation of pulmonary vascular permeability after sepsis, and the antioxidant Ss-31 has a protective effect on pulmonary vascular permeability by downregulating the expression of AQP3 and inhibiting ROS production.


Assuntos
Antioxidantes/farmacologia , Aquaporina 3/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Oligopeptídeos/farmacologia , Veias Pulmonares/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Aquaporina 3/genética , Caveolina 1/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Ocludina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Veias Pulmonares/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sepse/genética , Sepse/metabolismo , Sepse/microbiologia , Transdução de Sinais
6.
Cell Commun Signal ; 18(1): 184, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225929

RESUMO

BACKGROUND: Vascular leakage is an important pathophysiological process of critical conditions such as shock and ischemia-reperfusion (I/R)-induced lung injury. Microparticles (MPs), including endothelial cell-derived microparticles (EMPs), platelet-derived microparticles (PMPs) and leukocyte-derived microparticles (LMPs), have been shown to participate in many diseases. Whether and which of these MPs take part in pulmonary vascular leakage and lung injury after I/R and whether these MPs have synergistic effect and the underlying mechanism are not known. METHODS: Using hemorrhage/transfusion (Hemo/Trans) and aorta abdominalis occlusion-induced I/R rat models, the role of EMPs, PMPs and LMPs and the mechanisms in pulmonary vascular leakage and lung injury were observed. RESULTS: The concentrations of EMPs, PMPs and LMPs were significantly increased after I/R. Intravenous administration of EMPs and PMPs but not LMPs induced pulmonary vascular leakage and lung injury. Furthermore, EMPs induced pulmonary sequestration of platelets and promoted more PMPs production, and played a synergistic effect on pulmonary vascular leakage. MiR-1, miR-155 and miR-542 in EMPs, and miR-126 and miR-29 in PMPs, were significantly increased after hypoxia/reoxygenation (H/R). Of which, inhibition of miR-155 in EMPs and miR-126 in PMPs alleviated the detrimental effects of EMPs and PMPs on vascular barrier function and lung injury. Overexpression of miR-155 in EMPs down-regulated the expression of tight junction related proteins such as ZO-1 and claudin-5, while overexpression of miR-126 up-regulated the expression of caveolin-1 (Cav-1), the trans-cellular transportation related protein such as caveolin-1 (Cav-1). Inhibiting EMPs and PMPs production with blebbistatin (BLE) and amitriptyline (AMI) alleviated I/R induced pulmonary vascular leakage and lung injury. CONCLUSIONS: EMPs and PMPs contribute to the pulmonary vascular leakage and lung injury after I/R. EMPs mediate pulmonary sequestration of platelets, producing more PMPs to play synergistic effect. Mechanically, EMPs carrying miR-155 that down-regulates ZO-1 and claudin-5 and PMPs carrying miR-126 that up-regulates Cav-1, synergistically mediate pulmonary vascular leakage and lung injury after I/R. Video Abstract.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Pulmão/irrigação sanguínea , Traumatismo por Reperfusão/complicações , Amitriptilina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Caveolina 1/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Claudina-5/metabolismo , Células Endoteliais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
7.
Artif Cells Nanomed Biotechnol ; 48(1): 1272-1281, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33084450

RESUMO

Volume resuscitation is an important early treatment for haemorrhagic shock. Haemoglobin-based oxygen carrier (HBOC) can expand the volume and provide oxygen for tissues. Vascular leakage is common complication in the process of haemorrhagic shock and resuscitation. The aim of this study was to observe the effects of HBOC (a bovine-derived, cross-linked tetramer haemoglobin oxygen-carrying solution, 0.5 g/L) on vascular leakage in rats after haemorrhagic shock. A haemorrhagic shock rat model and hypoxic vascular endothelial cells (VECs) were used. The role of intercellular junctions and endothelial glycocalyx in the protective effects of HBOC and the relationship with mitochondrial function were analysed. After haemorrhagic shock, the pulmonary vascular permeability to FITC-BSA, Evans Blue was increased, endothelial glycocalyx was destroyed and the expression of intercellular junction proteins was decreased. After haemorrhagic shock, a small volume of HBOC solution (6 ml/kg) protected pulmonary vascular permeability, increased structural thickness of endothelial glycocalyx, the levels of its components and increased expression levels of the intercellular junction proteins ZO-1, VE-cadherin and occludin. Moreover, HBOC significantly increased oxygen delivery and consumption in rats, improved VEC mitochondrial function and structure. In conclusion, HBOC mitigates endothelial leakage by protecting endothelial glycocalyx and intercellular junctions through improving mitochondrial function and tissue oxygen delivery.


Assuntos
Substitutos Sanguíneos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Pulmão/irrigação sanguínea , Choque Hemorrágico/metabolismo , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Oxigênio/metabolismo , Permeabilidade/efeitos dos fármacos , Ratos
8.
Am J Physiol Lung Cell Mol Physiol ; 309(11): L1323-32, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26342084

RESUMO

Connexin (Cx)43 has been shown to participate in several cardiovascular diseases. Increased vascular permeability is a common and severe complication in sepsis or septic shock. Whether or not Cx43 takes part in the regulation of vascular permeability in severe sepsis is not known, and the underlying mechanism has not been described. With cecal ligation and puncture-induced sepsis in rats and lipopolysaccharide (LPS)-treated vascular endothelial cells (VECs) from pulmonary veins, the role of Cx43 in increased vascular permeability and its relationship to the RhoA/Rock1 pathway were studied. It was shown that vascular permeability in the lungs, kidneys, and mesentery in sepsis rats and LPS-stimulated monolayer pulmonary vein VECs was significantly increased and positively correlated with the increased expression of Cx43 and Rock1 in these organs and cultured pulmonary vein VECs. The connexin inhibitor carbenoxolone (10 mg/kg iv) and the Rock1 inhibitor Y-27632 (2 mg/kg iv) alleviated the vascular leakage of lung, mesentery, and kidney in sepsis rats. Overexpressed Cx43 increased the phosphorylation of 20-kDa myosin light chain (MLC20) and the expression of Rock1 and increased the vascular permeability and decreased the transendothelial electrical resistance of pulmonary vein VECs. Cx43 RNA interference decreased the phosphorylation of MLC20 and the expression of Rock1 and decreased LPS-stimulated hyperpermeability of cultured pulmonary vein VECs. The Rock1 inhibitor Y-27632 alleviated LPS- and overexpressed Cx43-induced hyperpermeability of monolayer pulmonary vein VECs. This report shows that Cx43 participates in the regulation of vascular permeability in sepsis and that the mechanism is related to the Rock1-MLC20 phosphorylation pathway.


Assuntos
Permeabilidade Capilar , Conexina 43/metabolismo , Cadeias Leves de Miosina/imunologia , Sepse/metabolismo , Sepse/fisiopatologia , Quinases Associadas a rho/metabolismo , Animais , Ceco/patologia , Células Endoteliais/metabolismo , Feminino , Interleucina-6/sangue , Rim/irrigação sanguínea , Lentivirus/metabolismo , Ligadura , Lipopolissacarídeos , Pulmão/irrigação sanguínea , Masculino , Mesentério/irrigação sanguínea , Peso Molecular , Fosforilação , Proteína Quinase C/metabolismo , Veias Pulmonares/patologia , Punções , Interferência de RNA , Ratos Sprague-Dawley , Sepse/sangue , Transdução de Sinais , Fibras de Estresse/metabolismo , Fator de Necrose Tumoral alfa/sangue , Proteína rhoA de Ligação ao GTP/metabolismo
9.
J Surg Res ; 193(1): 334-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25048290

RESUMO

BACKGROUND: Bradykinin (BK) has many biological effects in inflammation, allergy, and septic shock. Studies have shown that low doses of BK can induce vascular relaxation and high doses can induce vascular contraction in many pathophysiological conditions, but the role and mechanisms that high doses of BK have on vascular contraction in hemorrhagic shock are not clear. METHODS: With hemorrhagic-shock rats and hypoxia-treated superior mesenteric artery (SMA), we investigated the role and mechanisms of high doses of BK-induced vascular contraction in hemorrhagic shock. RESULTS: High doses of BK (500-50,000 ng/kg in vivo or 10(-10) to 10(-5) mol/L in vitro) dose dependently induced vascular contraction of SMA and increased the vascular calcium sensitivity in normal and hemorrhagic-shock rats. Less than 10(-10) mol/L of BK induced vascular dilation BK-induced increase of vascular contractile response and calcium sensitivity was reduced by denudation of the endothelium, 18α-glycyrrhetic acid (an inhibitor of myoendothelial gap junction) and connexin 43 antisense oligodeoxynucleotide. Further studies found that high concentrations of BK-induced vascular contraction in hemorrhagic shock was closely related to the activation of Rho A-Rho kinase pathway and Protein Kinase C (PKC) α and ε. CONCLUSIONS: High doses of BK can induce vascular contraction in hemorrhagic shock condition, which is endothelium and myoendothelial gap junction dependent. Cx43-mediated activation of Rho A-Rho kinase and Protein Kinase C (PKC) pathway plays a very important role in this process. This finding provided a new angle of view to the biological role of BK in other pathophysiological conditions such as hemorrhagic shock or hypoxia.


Assuntos
Bradicinina/farmacologia , Choque Hemorrágico/tratamento farmacológico , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Conexina 43/genética , Relação Dose-Resposta a Droga , Hipóxia/tratamento farmacológico , Artéria Mesentérica Superior/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-épsilon/metabolismo , Ratos Sprague-Dawley , Choque Hemorrágico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
10.
Shock ; 42(3): 239-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24827390

RESUMO

Our previous study demonstrated that Rho kinase and protein kinase C (PKC) played important parts in the regulation of vascular reactivity after shock. Using superior mesenteric arteries (SMAs) from hemorrhagic shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs), relationship of PKCε regulation of vascular reactivity to Rho kinase, as well as the signal transduction after shock, was investigated. The results showed that inhibition of Rho kinase with the Rho kinase-specific inhibitor Y-27632 antagonized the PKCε-specific agonist carbachol and highly expressed PKCε-induced increase of vascular reactivity in SMAs and VSMCs, whereas inhibition of PKCε with its specific inhibitory peptide did not antagonize the Rho kinase agonist (U-46619)-induced increase of vascular reactivity in SMAs and VSMCs. Activation of PKCε or highly expressed PKCε upregulated the activity of Rho kinase and the phosphorylation of PKC-dependent phosphatase inhibitor 17 (CPI-17), zipper interacting protein kinase (ZIPK), and integrin-linked kinase (ILK), whereas activation of Rho kinase increased only CPI-17 phosphorylation. The specific neutralization antibodies of ZIPK and ILK antagonized PKCε-induced increases in the activity of Rho kinase, but CPI-17 neutralization antibody did not antagonize this effect. These results suggested that Rho kinase takes part in the regulation of PKCε on vascular reactivity after shock. Rho kinase is downstream of PKCε. Protein kinase Cε activates Rho kinase via ZIPK and ILK; CPI-17 is downstream of Rho kinase.


Assuntos
Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteína Quinase C-épsilon/metabolismo , Choque Hemorrágico/enzimologia , Vasoconstrição , Quinases Associadas a rho/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Feminino , Técnicas In Vitro , Masculino , Artéria Mesentérica Superior/enzimologia , Artéria Mesentérica Superior/fisiopatologia , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Perfusão , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C-épsilon/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Choque Hemorrágico/fisiopatologia , Transdução de Sinais , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...