Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1158029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091800

RESUMO

Background: The precise diagnostic and prognostic biological markers were needed in immunotherapy for sepsis. Considering the role of necroptosis and immune cell infiltration in sepsis, differentially expressed necroptosis-related genes (DE-NRGs) were identified, and the relationship between DE-NRGs and the immune microenvironment in sepsis was analyzed. Methods: Machine learning algorithms were applied for screening hub genes related to necroptosis in the training cohort. CIBERSORT algorithms were employed for immune infiltration landscape analysis. Then, the diagnostic value of these hub genes was verified by the receiver operating characteristic (ROC) curve and nomogram. In addition, consensus clustering was applied to divide the septic patients into different subgroups, and quantitative real-time PCR was used to detect the mRNA levels of the hub genes between septic patients (SP) (n = 30) and healthy controls (HC) (n = 15). Finally, a multivariate prediction model based on heart rate, temperature, white blood count and 4 hub genes was established. Results: A total of 47 DE-NRGs were identified between SP and HC and 4 hub genes (BACH2, GATA3, LEF1, and BCL2) relevant to necroptosis were screened out via multiple machine learning algorithms. The high diagnostic value of these hub genes was validated by the ROC curve and Nomogram model. Besides, the immune scores, correlation analysis and immune cell infiltrations suggested an immunosuppressive microenvironment in sepsis. Septic patients were divided into 2 clusters based on the expressions of hub genes using consensus clustering, and the immune microenvironment landscapes and immune function between the 2 clusters were significantly different. The mRNA levels of the 4 hub genes significantly decreased in SP as compared with HC. The area under the curve (AUC) was better in the multivariate prediction model than in other indicators. Conclusion: This study indicated that these necroptosis hub genes might have great potential in prognosis prediction and personalized immunotherapy for sepsis.

2.
Adv Biol (Weinh) ; 7(8): e2200307, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097708

RESUMO

The prevalence and severity of high-altitude sickness increases with increasing altitude. Prevention of hypoxia caused by high-altitude sickness is an urgent problem. As a novel oxygen-carrying fluid, modified hemoglobin can carry oxygen in a full oxygen partial pressure environment and release oxygen in a low oxygen partial pressure environment. It is unclear whether modified hemoglobin can improve hypoxic injury on a plateau. Using hypobaric chamber rabbit (5000 m) and plateau goat (3600 m) models, general behavioral scores and vital signs, hemodynamic, vital organ functions, and blood gas are measured. The results show that the general behavioral scores and vital signs decrease significantly in the hypobaric chamber or plateau, and the modified hemoglobin can effectively improve the general behavioral scores and vital signs in rabbits and goats, and reduce the degree of damage to vital organs. Further studies reveal that arterial partial pressure of oxygen (PaO2 ) and arterial oxygen saturation (SaO2 ) on the plateau decrease rapidly, and the modified hemoglobin could increase PaO2 and SaO2 ; thus, increasing the oxygen-carrying capacity. Moreover, modified hemoglobin has few side effects on hemodynamics and kidney injury. These results indicate that modified hemoglobin has a protective effect against high-altitude sickness.


Assuntos
Doença da Altitude , Animais , Coelhos , Doença da Altitude/prevenção & controle , Cabras , Hipóxia/etiologia , Oxigênio/uso terapêutico , Hemoglobinas
3.
Mil Med Res ; 10(1): 13, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907884

RESUMO

BACKGROUND: Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis. We hypothesized that pericytes, a group of pluripotent cells that maintain vascular integrity and tension, are protective against sepsis via regulating vascular reactivity and permeability. METHODS: We conducted a series of in vivo experiments using wild-type (WT), platelet-derived growth factor receptor beta (PDGFR-ß)-Cre + mT/mG transgenic mice and Tie2-Cre + Cx43flox/flox mice to examine the relative contribution of pericytes in sepsis, either induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. In a separate set of experiments with Sprague-Dawley (SD) rats, pericytes were depleted using CP-673451, a selective PDGFR-ß inhibitor, at a dosage of 40 mg/(kg·d) for 7 consecutive days. Cultured pericytes, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were used for mechanistic investigations. The effects of pericytes and pericyte-derived microvesicles (PCMVs) and candidate miRNAs on vascular reactivity and barrier function were also examined. RESULTS: CLP and LPS induced severe injury/loss of pericytes, vascular hyporeactivity and leakage (P < 0.05). Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization (P < 0.05). Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels (P < 0.05). Additionally, PCMVs transferred miR-145 and miR-132 to VSMCs and VECs, respectively, exerting a protective effect on vascular reactivity and barrier function after sepsis (P < 0.05). miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2 (Sphk2)/sphingosine-1-phosphate receptor (S1PR)1/phosphorylation of myosin light chain 20 pathway, whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways. CONCLUSIONS: Pericytes are protective against sepsis through regulating vascular reactivity and barrier function. Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.


Assuntos
MicroRNAs , Sepse , Animais , Camundongos , Ratos , Permeabilidade Capilar/fisiologia , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/farmacologia , Pericitos/metabolismo , Ratos Sprague-Dawley
4.
Int J Nanomedicine ; 18: 693-709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816330

RESUMO

Background: Intestinal barrier dysfunction is an important complication of sepsis, while the treatment is limited. Recently, parthenolide (PTL) has attracted much attention as a strategy of sepsis, but whether nano parthenolide (Nano PTL) is therapeutic in sepsis-induced intestinal barrier dysfunction is obscured. Methods: In this study, cecal ligation and puncture (CLP)-induced sepsis rats and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells (IECs) were used to investigate the effect of PTL on intestinal barrier dysfunction. Meanwhile, we synthesized Nano PTL and compared the protective effect of Nano PTL with ordinary PTL on intestinal barrier function in septic rats and IECs. Network pharmacology and serotonin 2A (5-HTR2A) inhibitor were used to explore the mechanism of PTL on the intestinal barrier function of sepsis. Results: The encapsulation rate of Nano PTL was 95±1.5%, the drug loading rate was 11±0.5%, and the average uptake rate of intestinal epithelial cells was 94%. Ordinary PTL and Nano PTL improved the survival rate and survival time of septic rats, reduced the mean arterial pressure and the serum level of inflammatory cytokines, and protected the liver and kidney functions in vivo, and increased the value of transmembrane resistance (TEER) reduced the reactive oxygen species (ROS) and apoptosis in IECs in vitro through 5-HTR2A. Nano PTL had better effect than ordinary PTL. Conclusion: Ordinary PTL and Nano PTL can protect the intestinal barrier function of septic rats by inhibiting apoptosis and ROS through up-regulating 5-HTR2A, Nano PTL is better than ordinary PTL.


Assuntos
Mucosa Intestinal , Sepse , Ratos , Animais , Espécies Reativas de Oxigênio/farmacologia , Intestinos , Sepse/tratamento farmacológico , Apoptose
5.
Adv Biol (Weinh) ; 7(4): e2200236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634922

RESUMO

Severe trauma and hemorrhaging are often accompanied by delayed cutaneous wound healing. Soybean isoflavone is a natural phytoestrogen that has attracted great attention due to its protective effects against various injuries. Endothelial progenitor cells (EPCs) are precursor cells with directional differentiation characteristics. This study is to determine whether genistein (GEN), an isoflavone in soybean products, benefits wound healing in hemorrhagic shock (HS) rats by promoting EPC homing and to investigate the underlying mechanisms. In this study, it is found that GEN promotes skin wound healing in HS rats, which is due at least partly to the mobilization of endogenous EPCs to the injury site via angiotensin II (Ang-II), stromal cell-derived factor-1alpha (SDF-1α), and transforming growth factor beta(TGF-ß) signaling.


Assuntos
Células Progenitoras Endoteliais , Choque Hemorrágico , Ratos , Animais , Células Progenitoras Endoteliais/metabolismo , Genisteína/farmacologia , Genisteína/uso terapêutico , Genisteína/metabolismo , Glycine max , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Cicatrização
6.
J Surg Res ; 284: 173-185, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577230

RESUMO

INTRODUCTION: Marine casualties are increasing, and mortality from trauma associated with immersion in seawater is high. However, the associated pathophysiological characteristics remain unclear, limiting research into the early emergency treatment strategy. METHODS: Healthy and 50% hemorrhagic shock rats were soaked in 15°C and 21°C seawater for 2 h, 4 h and 6 h, respectively, and the effects on vital signs, internal environment, tissue metabolism, lethal triad, vital organ functions and survival were observed. RESULTS: Immersion in seawater can cause death in healthy rats. Rats with hemorrhagic shock in 15°C seawater showed a lower survival rate than the corresponding groups in 21°C seawater. Moreover, compared with 21°C seawater, 15°C seawater played a more remarkable role in decreasing mean arterial pressure, heart rate, and respiration rate, increasing water content and decreasing Na+/K+-ATPase activity in the brain and lung; increase in plasma osmolality, Na+, K+, Cl-, and the occurrence of the lethal triad manifested by a decrease in core body temperature, pH, lactate, and an increase in coagulation parameters, as well as damage to cardiac, intestinal, hepatic, and renal functions in rats with hemorrhagic shock. CONCLUSIONS: Immersion in seawater at low temperatures could be lethal to healthy rats, causing the occurrence of a lethal triad and damage to vital organs. Furthermore, 15°C-seawater had a more significant effect than 21°C-seawater on aggravating the imbalance of internal environment and tissue metabolism, resulting in a higher incidence of the lethal triad and thus aggravating the dysfunctions of vital organs, which eventually resulted in higher mortality in rats with hemorrhagic shock.


Assuntos
Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/complicações , Choque Hemorrágico/terapia , Imersão , Pulmão , Coagulação Sanguínea , Água do Mar
7.
J Transl Med ; 20(1): 591, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514103

RESUMO

BACKGROUND: Myocardial dysfunction played a vital role in organ damage after sepsis. Fluid resuscitation was the essential treatment in which Lactate Ringer's solution (LR) was commonly used. Since LR easily led to hyperlactatemia, its resuscitation effect was limited. Malate Ringer's solution (MR) was a new resuscitation crystal liquid. Whether MR had a protective effect on myocardial injury in sepsis and the relevant mechanism need to be studied. METHODS: The cecal ligation and puncture (CLP) inducing septic model and lipopolysaccharide (LPS) stimulating cardiomyocytes were used, and the cardiac function, the morphology and function of mitochondria were observed. The protective mechanism of MR on myocardial injury was explored by proteomics. Then the effects of TPP@PAMAM-MR, which consisted of the mitochondria- targeting polymer embodied malic acid, was further observed. RESULTS: Compared with LR, MR resuscitation significantly prolonged survival time, improved the cardiac function, alleviated the damages of liver, kidney and lung following sepsis in rats. The proteomics of myocardial tissue showed that differently expressed proteins between MR and LR infusion involved oxidative phosphorylation, apoptosis. Further study found that MR decreased ROS, improved the mitochondrial morphology and function, and ultimately enhanced mitochondrial respiration and promoted ATP production. Moreover, MR infusion decreased the expression of apoptosis-related proteins and increased the expression of anti-apoptotic proteins. TPP@PAMAM@MA was a polymer formed by wrapping L-malic acid with poly amido amine (PAMAM) modified triphenylphosphine material. TPP@PAMAM-MR (TPP-MR), which was synthesized by replacing the L-malic acid of MR with TPP@PAMAM@MA, was more efficient in targeting myocardial mitochondria and was superior to MR in protecting the sepsis-inducing myocardial injury. CONCLUSION: MR was suitable for protecting myocardial injury after sepsis. The mechanism was related to MR improving the function and morphology of cardiomyocyte mitochondria and inhibiting cardiomyocyte apoptosis. The protective effect of TPP-MR was superior to MR.


Assuntos
Sepse , Choque Hemorrágico , Ratos , Animais , Solução de Ringer , Malatos/farmacologia , Malatos/uso terapêutico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/terapia , Aminas , Sepse/complicações , Sepse/tratamento farmacológico , Proteínas Reguladoras de Apoptose , Polímeros
8.
Front Physiol ; 13: 948541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262250

RESUMO

Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.

9.
Front Physiol ; 13: 1004714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200050

RESUMO

Hypotension resuscitation is an important principle for the treatment after trauma. Current hypotensive resuscitation strategies cannot obtain an ideal outcome for remote regions. With the uncontrolled hemorrhagic shock (UHS) model in rats, the effects of norepinephrine (NE) on the tolerance time of hypotensive resuscitation, blood loss, vital organ functions, and animal survival were observed. Before bleeding was controlled, only the LR infusion could effectively maintain the MAP to 50-60 mmHg for 1 h, while the MAP gradually decreased with prolonging time, even with increasing infusion volume. Low-dose NE during hypotensive resuscitation prolonged the hypotensive tolerance time to 2-3 h, and the effect of 0.3 µg/kg/min NE was the best. Further studies showed that 0.3 µg/kg/min NE during hypotensive resuscitation significantly lightened the damage of organ function induced by UHS via protecting mitochondrial function, while the LR infusion did not. At the same time, NE administration improved Hb content, DO2, and VO2, and restored liver and kidney blood flow. The survival results showed that low-dose NE administration increased the survival rate and prolonged the survival time. Together, low-dose NE during hypotensive resuscitation was suitable for the early treatment of UHS, which can strive for the golden window of emergency treatment for serious trauma patients by reducing blood loss and protecting vital organ functions.

10.
Shock ; 57(4): 526-535, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628454

RESUMO

BACKGROUND: Hemorrhagic shock is the important factor for causing death of trauma and war injuries. However, pathophysiological characteristics and underlying mechanism in hemorrhagic shock with hot environment remain unclear. METHODS: Hemorrhagic shock in hot environment rat model was used to explore the changes of mitochondrial and vital organ functions, the variation of the internal environment, stress factors, and inflammatory factors; meanwhile, the suitable treatment was further studied. RESULTS: Above 36°C hot environment induced the increase of core temperature of rats, and the core temperature was not increased in 34°C hot environment, but the 34°C hot environment aggravated significantly hemorrhagic shock induced mortality. Further study showed that the mitochondrial functions of heart, liver, and kidney were more damaged in hemorrhagic shock rats with 34°C hot environment as compared with room environment. Moreover, the results showed that in hemorrhagic shock rats with hot environment, the blood concentration of Na+, K+, and plasma osmotic pressure, the expression of inflammatory factors tumor necrosis factor-α and interleukin-6 in the serum, as well as the stress factors Adrenocorticotropic Hormone and Glucocorticoid were all notably enhanced; and acidosis was more serous; oxygen supply and oxygen consumption were remarkably decreased. In addition, the present study demonstrated that mild hypothermia (10°C) fluid resuscitation could significantly improve the survival rate in hemorrhagic shock rats with hot environment as compared with normal temperature fluid resuscitation. CONCLUSIONS: Hot environment accelerated the death of hemorrhagic shock rats, which was related to the disorder of internal environment, the increase of inflammatory and stress factors. Furthermore, moderate hypothermic (10°C) fluid resuscitation was suitable for the treatment of hemorrhagic shock in hot environment.


Assuntos
Hipotermia Induzida , Hipotermia , Choque Hemorrágico , Animais , Hidratação/métodos , Hipotermia Induzida/métodos , Ratos , Ressuscitação/métodos
11.
Front Pharmacol ; 12: 770558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916944

RESUMO

Background: Sepsis/septic shock is a common complication in the intensive care unit, and the opening of the mitochondrial permeability transition pore (mPTP), as well as the endoplasmic reticulum stress (ERS), play important roles in this situation. Whether the combination of anti-ERS and anti-mPTP by 4-phenylbutyric acid (PBA) and Cyclosporine A (CsA) could benefit sepsis is unclear. Methods: The cecal ligation and puncture-induced septic shock models were replicated in rats, and lipopolysaccharide (LPS)-challenged primary vascular smooth muscle cells and H9C2 cardiomyocytes in vitro models were also used. The therapeutic effects of CsA, PBA, and combined administration on oxygen delivery, cardiac and vascular function, vital organ injury, and the underlying mechanisms were observed. Results: Septic shock significantly induced cardiovascular dysfunction, hypoperfusion, and organ injury and resulted in high mortality in rats. Conventional treatment including fluid resuscitation, vasoactive agents, and antibiotics slightly restored tissue perfusion and organ function in septic rats. Supplementation of CsA or PBA improved the tissue perfusion, organ function, and survival of septic shock rats. The combined application of PBA and CsA could significantly enhance the beneficial effects, compared with using PBA or CsA alone. Further study showed that PBA enhanced CsA-induced cardiovascular protection, which contributed to better therapeutic effects. Conclusion: Anti-ERS and anti-mPTP-opening by the combination of PBA and CsA was beneficial to septic shock. PBA enforced the CsA-associated cardiovascular protection and contributed to the synergetic effect.

12.
Cell Commun Signal ; 19(1): 115, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784912

RESUMO

BACKGROUND: It is well known that sepsis is a prevalent severe disease caused by infection and the treatment strategies are limited. Recently pericyte-derived microvesicles (PMVs) were confirmed to be therapeutic in many diseases, whether PMVs can protect vascular endothelial cell (VEC) injury is unknown. METHODS: Pericytes were extracted from the retina of newly weaned rats, and PMVs were collected after starvation and characterized by flow-cytometry and transmission electron microscopy. First, the effect of PMVs on pulmonary vascular function in septic rats was measured via intravenous administration with HE staining, immunofluorescence, and Elisa analysis. Then, PMVs were co-incubated with VECs in the presence of lipopolysaccharide (LPS), and observed the protective effect of PMVs on VECs. Next, the proteomic analysis and further Gene Ontology (GO) enrichment analysis were performed to analyze the therapeutic mechanism of PMVs, and the angiogenesis-related protein CTGF was highly expressed in PMVs. Finally, by CTGF upregulation and downregulation in PMV, the role of PMV-carried CTGF was investigated. RESULTS: PMVs restored the proliferation and angiogenesis ability of pulmonary VECs, and alleviated pulmonary vascular leakage in septic rats and LPS-stimulated VECs. Further study showed that PMVs delivered CTGF to VECs, and subsequently activated ERK1/2, and increased the phosphorylation of STAT3, thereby improving the function of VECs. The further study found CD44 mediated the absorption and internalization of PMVs to VECs, the anti-CD44 antibody inhibited the protective effect of PMVs. CONCLUSIONS: PMVs may delivery CTGF to VECs, and promote the proliferation and angiogenesis ability by activating the CTGF-ERK1/2-STAT3 axis, thereby protecting pulmonary vascular function in sepsis. The therapeutic effect of PMVs was highly related to CD44-mediated absorption. Video Abstract.


Assuntos
Pericitos
13.
Cell Death Dis ; 12(11): 1050, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741026

RESUMO

Mitochondrial mass imbalance is one of the key causes of cardiovascular dysfunction after hypoxia. The activation of dynamin-related protein 1 (Drp1), as well as its mitochondrial translocation, play important roles in the changes of both mitochondrial morphology and mitochondrial functions after hypoxia. However, in addition to mediating mitochondrial fission, whether Drp1 has other regulatory roles in mitochondrial homeostasis after mitochondrial translocation is unknown. In this study, we performed a series of interaction and colocalization assays and found that, after mitochondrial translocation, Drp1 may promote the excessive opening of the mitochondrial permeability transition pore (mPTP) after hypoxia. Firstly, mitochondrial Drp1 maximumly recognizes mPTP channels by binding Bcl-2-associated X protein (BAX) and a phosphate carrier protein (PiC) in the mPTP. Then, leucine-rich repeat serine/threonine-protein kinase 2 (LRRK2) is recruited, whose kinase activity is inhibited by direct binding with mitochondrial Drp1 after hypoxia. Subsequently, the mPTP-related protein hexokinase 2 (HK2) is inactivated at Thr-473 and dissociates from the mitochondrial membrane, ultimately causing structural disruption and overopening of mPTP, which aggravates mitochondrial and cellular dysfunction after hypoxia. Thus, our study interprets the dual direct regulation of mitochondrial Drp1 on mitochondrial morphology and functions after hypoxia and proposes a new mitochondrial fission-independent mechanism for the role of Drp1 after its translocation in hypoxic injury.


Assuntos
Dinaminas/metabolismo , Hexoquinase/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Domínio Catalítico , Hipóxia Celular , Cognição , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Fosforilação , Ligação Proteica , Proteoma/metabolismo , Ratos Sprague-Dawley
14.
Front Physiol ; 12: 690190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646146

RESUMO

Hypoxia is the major cause of acute altitude hypoxia injury in acute mountain sickness (AMS). YQ23 is a kind of novel bovine-derived, cross-linked hemoglobin-based oxygen carrier (HBOC). It has an excellent capacity for carrying and releasing oxygen. Whether YQ23 has a protective effect on the acute altitude hypoxia injury in AMS is unclear. In investigating this mechanism, the hypobaric chamber rabbit model and plain-to-plateau goat model were used. Furthermore, this study measured the effects of YQ23 on the ability of general behavior, general vital signs, Electrocardiograph (ECG), hemodynamics, vital organ injury markers, and blood gases in hypobaric chamber rabbits and plain-to-plateau goats. Our results showed that the ability of general behavior (general behavioral scores, GBS) (GBS: 18 ± 0.0 vs. 14 ± 0.5, p < 0.01) and the general vital signs weakened [Heart rate (HR, beats/min): 253.5 ± 8.7 vs. 301.1 ± 19.8, p < 0.01; Respiratory rate (RR, breaths/min): 86.1 ± 5.2 vs. 101.2 ± 7.2, p < 0.01] after exposure to plateau environment. YQ23 treatment significantly improved the ability of general behavior (GBS: 15.8 ± 0.5 vs. 14.0 ± 0.5, p < 0.01) and general vital signs [HR (beats/min): 237.8 ± 24.6 vs. 301.1 ± 19.8, p < 0.01; RR (breaths/min): 86.9 ± 6.6 vs. 101.2 ± 7.2, p < 0.01]. The level of blood PaO2 (mmHg) (115.3 ± 4.7 vs. 64.2 ± 5.6, p < 0.01) and SaO2(%) (97.7 ± 0.7 vs. 65.8 ± 3.1, p < 0.01) sharply decreased after exposure to plateau, YQ23 treatment significantly improved the blood PaO2 (mmHg) (97.6 ± 3.7 vs. 64.2 ± 5.6, p < 0.01) and SaO2(%) (82.7 ± 5.2 vs. 65.8 ± 3.1, p < 0.01). The cardiac ischemia and injury marker was increased [troponin (TnT, µg/L):0.08 ± 0.01 vs. 0.12 ± 0.02, p < 0.01], as well as the renal [blood urea nitrogen (BUN, mmol/L): 6.0 ± 0.7 vs. 7.3 ± 0.5, p < 0.01] and liver injury marker [alanine aminotransferase (ALT, U/L): 45.8 ± 3.6 vs. 54.6 ± 4.2, p < 0.01] was increased after exposure to a plateau environment. YQ23 treatment markedly alleviated cardiac ischemia [TnT (µg/L):0.10 ± 0.01 vs 0.12 ± 0.02, p < 0.01] and mitigated the vital organ injury. Besides, YQ23 exhibited no adverse effects on hemodynamics, myocardial ischemia, and renal injury. In conclusion, YQ23 effectively alleviates acute altitude hypoxia injury of AMS without aside effects.

15.
J Cardiovasc Pharmacol ; 78(2): 280-287, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050090

RESUMO

ABSTRACT: Aquaporins (AQPs) are a group of membrane proteins related to water permeability. Studies have shown that AQPs play a vital role in various diseases. Whether AQPs participate in regulating vascular permeability after sepsis and whether the subtype of AQPs is related are unknown. Ss-31, as a new antioxidant, had protective effects on a variety of diseases. However, whether Ss-31 has a protective effect on pulmonary vascular permeability in sepsis and whether its effect is related to AQPs are unclear. Using the cecum ligation perforation-induced septic rat and LPS-treated pulmonary vein endothelial cells, the role of AQPs in the regulation of the permeability of pulmonary vascular and its relationship to Ss-31 were studied. The results showed that the pulmonary vascular permeability significantly increased after sepsis, meanwhile the expressions of AQP3, 4, and 12 increased. Among those, the AQP3 was closely correlated with pulmonary vascular permeability. The inhibition of AQP3 antagonized the increase of the permeability of monolayer pulmonary vein endothelial cells. Further study showed that the expression of caveolin-1 (Cav-1) increased and occludin decreased after sepsis. The inhibition of AQP3 antagonized the decrease of Cav-1 and the increase of occludin in sepsis. Antioxidant Ss-31 decreased the expression of AQP3 and ROS levels. At the same time, Ss-31 improved pulmonary vascular permeability and prolonged survival of sepsis rats. In conclusion, AQP3 participates in the regulation of pulmonary vascular permeability after sepsis, and the antioxidant Ss-31 has a protective effect on pulmonary vascular permeability by downregulating the expression of AQP3 and inhibiting ROS production.


Assuntos
Antioxidantes/farmacologia , Aquaporina 3/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Oligopeptídeos/farmacologia , Veias Pulmonares/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Aquaporina 3/genética , Caveolina 1/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Ocludina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Veias Pulmonares/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sepse/genética , Sepse/metabolismo , Sepse/microbiologia , Transdução de Sinais
16.
Front Pharmacol ; 12: 652716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054533

RESUMO

Background: Hypotensive resuscitation is widely applied for trauma and war injury to reduce bleeding during damage-control resuscitation, but the treatment time window is limited in order to avoid hypoxia-associated organ injury. Whether a novel hemoglobin-based oxygen carrier (HBOC), YQ23 in this study, could protect organ function, and extend the Golden Hour for treatment is unclear. Method: Uncontrolled hemorrhagic shock rats and miniature pigs were infused with 0.5, 2, and 5% YQ23 before bleeding was controlled, while Lactate Ringer's solution (LR) and fresh whole blood plus LR (WB + LR) were set as controls. During hypotensive resuscitation the mean blood pressure was maintained at 50-60 mmHg for 60 min. Hemodynamics, oxygen delivery and utilization, blood loss, fluid demand, organ function, animal survival as well as side effects were observed. Besides, in order to observe whether YQ23 could extend the Golden Hour, the hypotensive resuscitation duration was extended to 180 min and animal survival was observed. Results: Compared with LR, infusion of YQ23 in the 60 min pre-hospital hypotensive resuscitation significantly reduced blood loss and the fluid demand in both rats and pigs. Besides, YQ23 could effectively stabilize hemodynamics, and increase tissue oxygen consumption, increase the cardiac output, reduce liver and kidney injury, which helped to reduce the early death and improve animal survival. In addition, the hypotensive resuscitation duration could be extended to 180 min using YQ23. Side effects such as vasoconstriction and renal injury were not observed. The beneficial effects of 5% YQ23 are equivalent to similar volume of WB + LR. Conclusion: HBOC, such as YQ23, played vital roles in damage-control resuscitation for emergency care and benefited the uncontrolled hemorrhagic shock in the pre-hospital treatment by increasing oxygen delivery, reducing organ injury. Besides, HBOC could benefit the injured and trauma patients by extending the Golden Hour.

17.
Dentomaxillofac Radiol ; 50(5): 20200429, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881907

RESUMO

OBJECTIVE: To review and analyze the clinical and imaging features of central giant cell granuloma patients and to review the relevant literatures for the diagnosis and clinical manifestation of central giant cell granuloma. METHODS: Seven cases of central giant cell granuloma were retrospectively selected for the study, all of which were confirmed by pathology and had relevant imaging investigations. All seven cases had undergone CT scan, three cases had undergone MRI scan. Detailed clinical features were compared along with the imaging findings and analysis was done on the basis of their presentation and imaging features. RESULTS: The clinical features, radiologic features were varied according to the site of the lesion. CT features include unevenly dense expansile mass causing bone destruction and cortical thinning. While MRI features with low to iso-intensity in T1- and T2 weighted images. There may be presence of cystic degeneration, hemorrhage or hemosiderin deposits or osteoid formation, which can cause T1 and T2 signal changes. On contrast study, the lesion doesn't enhance but periphery may enhance mildly. CONCLUSION: Unevenly dense expansile mass with bone destruction and cortical thinning with low to iso-intensity in T1 weighted and T2 weighted images and mildly enhance peripherally, Central giant cell granuloma should be considered.


Assuntos
Granuloma de Células Gigantes , Granuloma de Células Gigantes/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
18.
Oxid Med Cell Longev ; 2020: 4132785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343806

RESUMO

BACKGROUND: The calcium-sensing receptor (CaSR) plays a fundamental role in extracellular calcium homeostasis in humans. Surprisingly, CaSR is also expressed in nonhomeostatic tissues and is involved in regulating diverse cellular functions. The objective of this study was to determine if Calhex-231 (Cal), a negative modulator of CaSR, may be beneficial in the treatment of traumatic hemorrhagic shock (THS) by improving cardiovascular function and investigated the mechanisms. METHODS: Rats that had been subjected to THS and hypoxia-treated vascular smooth muscle cells (VSMCs) were used in this study. The effects of Cal on cardiovascular function, animal survival, hemodynamics, and vital organ function in THS rats and the relationship to oxidative stress, mitochondrial fusion-fission, and microRNA (miR-208a) were investigated. RESULTS: Cal significantly improved hemodynamics, elevated blood pressure, increased vital organ blood perfusion and local oxygen supply, and markedly improved the survival outcomes of THS rats. Furthermore, Cal significantly improved vascular reactivity after THS in vivo and in vitro. Cal also restored the THS-induced decrease in myosin light chain (MLC) phosphorylation (the key element for VSMC contraction). Inhibition of MLC phosphorylation antagonized the Cal-induced restoration of vascular reactivity following THS. Cal suppressed oxidative stress in THS rats and hypoxic-VSMCs. Meanwhile, THS induced expression of mitochondrial fission proteins Drp1 and Fis1 and decreased expression of mitochondrial fusion protein Mfn1 in vascular tissues. Cal reduced expression of Drp1 and Fis1. In hypoxic-VSMCs, Cal inhibited mitochondrial fragmentation and preserved mitochondrial morphology. In addition, miR-208a mimic decreased Fis1 expression, and miR-208a inhibitor prevented Cal-induced Fis1 downregulation in hypoxic-VSMCs. CONCLUSION: Calhex-231 exhibits outstanding potential for effective therapy of traumatic hemorrhagic shock, and the beneficial effects result from its protection of vascular function via inhibition of oxidative stress and miR-208a-mediated mitochondrial fission.


Assuntos
Benzamidas/farmacologia , Cicloexilaminas/farmacologia , MicroRNAs/biossíntese , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Choque Hemorrágico , Ferimentos e Lesões , Animais , Feminino , Masculino , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
19.
Cell Commun Signal ; 18(1): 184, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225929

RESUMO

BACKGROUND: Vascular leakage is an important pathophysiological process of critical conditions such as shock and ischemia-reperfusion (I/R)-induced lung injury. Microparticles (MPs), including endothelial cell-derived microparticles (EMPs), platelet-derived microparticles (PMPs) and leukocyte-derived microparticles (LMPs), have been shown to participate in many diseases. Whether and which of these MPs take part in pulmonary vascular leakage and lung injury after I/R and whether these MPs have synergistic effect and the underlying mechanism are not known. METHODS: Using hemorrhage/transfusion (Hemo/Trans) and aorta abdominalis occlusion-induced I/R rat models, the role of EMPs, PMPs and LMPs and the mechanisms in pulmonary vascular leakage and lung injury were observed. RESULTS: The concentrations of EMPs, PMPs and LMPs were significantly increased after I/R. Intravenous administration of EMPs and PMPs but not LMPs induced pulmonary vascular leakage and lung injury. Furthermore, EMPs induced pulmonary sequestration of platelets and promoted more PMPs production, and played a synergistic effect on pulmonary vascular leakage. MiR-1, miR-155 and miR-542 in EMPs, and miR-126 and miR-29 in PMPs, were significantly increased after hypoxia/reoxygenation (H/R). Of which, inhibition of miR-155 in EMPs and miR-126 in PMPs alleviated the detrimental effects of EMPs and PMPs on vascular barrier function and lung injury. Overexpression of miR-155 in EMPs down-regulated the expression of tight junction related proteins such as ZO-1 and claudin-5, while overexpression of miR-126 up-regulated the expression of caveolin-1 (Cav-1), the trans-cellular transportation related protein such as caveolin-1 (Cav-1). Inhibiting EMPs and PMPs production with blebbistatin (BLE) and amitriptyline (AMI) alleviated I/R induced pulmonary vascular leakage and lung injury. CONCLUSIONS: EMPs and PMPs contribute to the pulmonary vascular leakage and lung injury after I/R. EMPs mediate pulmonary sequestration of platelets, producing more PMPs to play synergistic effect. Mechanically, EMPs carrying miR-155 that down-regulates ZO-1 and claudin-5 and PMPs carrying miR-126 that up-regulates Cav-1, synergistically mediate pulmonary vascular leakage and lung injury after I/R. Video Abstract.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Pulmão/irrigação sanguínea , Traumatismo por Reperfusão/complicações , Amitriptilina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Caveolina 1/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Claudina-5/metabolismo , Células Endoteliais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
20.
J Trauma Acute Care Surg ; 87(6): 1346-1353, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31464869

RESUMO

BACKGROUND: Vascular hyporeactivity plays an important role in organ dysfunction induced by endotoxic shock. Given that cytokine, such as TNF-α, plays an important role in endotoxic shock, the aim of the present study is to investigate the role of Tumor Necrosis Factor (TNF)-α in vascular hyporeactivity following endotoxic shock and the mechanisms. METHODS: Lipopolysaccharide (LPS) (1 mg/kg) injection was used for replicating the endotoxic shock model in the rabbit. The changes in the level of TNF-α in plasma in the rabbits model and the contractile response of superior mesenteric arteries (SMA) to norepinephrine (NE) and Ca were observed. The mechanisms in TNF-α-induced vascular hyporeactivity were further explored. RESULTS: The levels of TNF-α in plasma were gradually increased after 1 hour of LPS administration and reached the peak at 6 hours. The contractile responses of SMA to NE were decreased at 1 hour of LPS and lowest at 6 hour. TNF-α (200 ng/mL) incubation decreased contractile response of SMA to NE significantly. Further studies found that calcium desensitization participated in the occurrence of TNF-α-induced vascular hyporeactivity, the changes were consistent with the changes of vascular reactivity, calcium sensitivities were decreased significantly at 1 hour, 2 hours, 4 hours, and 6 hours after LPS injection. TNF-α (200 ng/mL) incubation could significantly reduce the contractile response of SMA to Ca. The activity of Rho-kinase and the changes of myosin light chain 20 (MLC20) phosphorylation level were significantly decreased at 6 hours following LPS administration, and TNF-α (200 ng/mL) incubation led to a decrease of Rho-kinase and MLC20 phosphorylation. Arginine vasopressin significantly antagonized TNF-α (200 ng/mL)-induced the decrease of the vascular reactivity and calcium sensitivity. CONCLUSION: TNF-α is involved in vascular hyporeactivity after endotoxic shock. Calcium desensitization plays an important role in TNF-α-induced vascular hyporeactivity after endotoxic shock. Rho-kinase/MLC20 phosphorylation pathway takes part in the regulation of calcium desensitization and vascular hyporeactivity induced by TNF-α. Arginine vasopressin is beneficial to endotoxic shock in TNF-α-induced vascular hyporeactivity.


Assuntos
Choque Séptico/fisiopatologia , Fator de Necrose Tumoral alfa/fisiologia , Vasoconstrição , Animais , Arginina Vasopressina/farmacologia , Cálcio/metabolismo , Feminino , Masculino , Cadeias Leves de Miosina/metabolismo , Fosforilação , Coelhos , Fator de Necrose Tumoral alfa/sangue , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...