Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 15(43): 5875-5884, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37902496

RESUMO

This study focuses on the development of a highly sensitive surface-enhanced Raman scattering (SERS) sensor for detecting homocysteine (Hcy) molecules. The Hcy sensor was created by depositing silver nanoparticles (AgNPs) onto the surface of graphene oxide (GO) film to form a dense AgNPs@GO composite film. The AgNPs on the composite film interacted with sulfur atoms (S) of Hcy molecules to form Ag-S bonds, which boosted the chemisorption of Hcy molecules and enabled them to be specifically recognized. The SERS sensor exhibited a maximum enhancement factor of up to 1.1 × 104, with a reliable linear response range from 1 to 60 ng mL-1. The limit of detection (LOD) for Hcy molecules was as low as 1.1 × 10-9 M. Moreover, Hcy molecules were successfully distinguished in a mixed solution of γ-aminobutyric acid and Hcy molecules. In this study, a simple preparation process of SERS substrate and a novel detection method for Hcy molecules provided a new pathway for the rapid and effective detection of Hcy molecules in the food and biomedicine fields.


Assuntos
Grafite , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Grafite/química , Filmes Cinematográficos
2.
Front Plant Sci ; 14: 1135105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866381

RESUMO

Introduction: Tobacco brown spot disease caused by Alternaria fungal species is a major threat to tobacco growth and yield. Thus, accurate and rapid detection of tobacco brown spot disease is vital for disease prevention and chemical pesticide inputs. Methods: Here, we propose an improved YOLOX-Tiny network, named YOLO-Tobacco, for the detection of tobacco brown spot disease under open-field scenarios. Aiming to excavate valuable disease features and enhance the integration of different levels of features, thereby improving the ability to detect dense disease spots at different scales, we introduced hierarchical mixed-scale units (HMUs) in the neck network for information interaction and feature refinement between channels. Furthermore, in order to enhance the detection of small disease spots and the robustness of the network, we also introduced convolutional block attention modules (CBAMs) into the neck network. Results: As a result, the YOLO-Tobacco network achieved an average precision (AP) of 80.56% on the test set. The AP was 3.22%, 8.99%, and 12.03% higher than that obtained by the classic lightweight detection networks YOLOX-Tiny network, YOLOv5-S network, and YOLOv4-Tiny network, respectively. In addition, the YOLO-Tobacco network also had a fast detection speed of 69 frames per second (FPS). Discussion: Therefore, the YOLO-Tobacco network satisfies both the advantages of high detection accuracy and fast detection speed. It will likely have a positive impact on early monitoring, disease control, and quality assessment in diseased tobacco plants.

3.
Micromachines (Basel) ; 13(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363864

RESUMO

It is crucial to improve printing frequency and ink droplet quality in thermal inkjet printing. This paper proposed a hemispherical chamber, and we used the CFD (computational fluid dynamics model) to simulate the inkjet process. During the whole simulation process, we first researched the hemispherical chamber's inkjet state equipped with straight, conical shrinkage, and conical diffusion nozzles. Based on the broken time and volume of the liquid column, the nozzle geometry of the hemispherical chamber was determined to be a conical shrinkage nozzle with a specific size of 15 µm in height and 15 µm in diameter at the top, and 20 µm in diameter at the bottom. Next, we researched the inkjet performance of the square chamber, the round chamber, and the trapezoidal chamber. The round chamber showed the best inkjet performance using 1.8 µs as the driving time and 10 MPa as the maximum bubble pressure. After that, we compared the existing thermal inkjet printing heads. The results showed that the hemispherical chamber inkjet head had the best performance, achieving 30 KHz high-frequency printing and having the most significant volume ratio of droplet to the chamber, reaching 14.9%. As opposed to the current 15 KHz printing frequency of the thermal inkjet heads, the hemispherical chamber inkjet head has higher inkjet performance, and the volume ratio between the droplet and the chamber meets the range standard of 10-15%. The hemispherical chamber structure can be applied to thermal inkjet printing, office printing, 3D printing, and bio-printing.

4.
Micromachines (Basel) ; 13(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630256

RESUMO

Efficient printing frequency is critical for thermal bubble inkjet printing, while the difficulty lies in the structural design and material selection of the heating resistors. In this paper, a TaN film was used as the main material of the heating resistors, and two TaN films were placed in parallel to form the chopsticks-shaped structure. The heating time was divided into two sections, in which 0-0.1 µs was the preheating and 1.2-1.8 µs was the primary heating. At 1.8 µs, the maximum temperature of the Si3N4 film could reach about 1100 °C. At the same time, the SiO2 film was added between the TaN film and Si3N4 film as a buffer layer, which effectively avoided the rupture of the Si3N4 film due to excessive thermal stress. Inside the inkjet print head, the maximum temperature of the chamber reached about 680 °C at 2.5 µs. Due to the high power of the heating resistors, the working time was greatly reduced and the frequency of the inkjet printing was effectively increased. At the interface between the back of the chip and the cartridge, the SiO2 film was used to connect to ensure a timely ink supply. Under the condition of 12 V at 40 kHz, the inkjet chip could print efficiently with 10 nozzles at the same time. The inkjet chip proposed in this paper is not limited to only office printing, but also provides a new reference for 3D printing, cell printing, and vegetable and fruit printing.

5.
Micromachines (Basel) ; 13(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208318

RESUMO

The utilization rate of ink liquid in the chamber is critical for the thermal bubble inkjet head. The difficult problem faced by the thermal bubble inkjet printing is how to maximize the use of ink in the chamber and increase the printing frequency. In this paper, by adding a flow restrictor and two narrow channels into the chamber, the H-shape flow-limiting structure is formed. At 1.8 µs, the speed of bubble expansion reaches the maximum, and after passing through the narrow channel, the maximum reverse flow rate of ink decreased by 25%. When the vapor bubble disappeared, the ink fills the nozzle slowly. At 20 µs, after passing through the narrow channel, the maximum flow rate of the ink increases by 39%. The inkjet printing frequency is 40 kHz, and the volume of the ink droplet is about 13.1 pL. The structure improves the frequency of thermal bubble inkjet printing and can maximize the use of liquid in the chamber, providing a reference for cell printing, 3D printing, bioprinting, and other fields.

6.
Micromachines (Basel) ; 14(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36677160

RESUMO

Laser speckle noise caused by coherence between lasers greatly influences the produced image. In order to suppress the effect of laser speckles on images, in this paper we set up a combination of a laser-structured light module and an infrared camera to acquire laser images, and propose an improved weighted non-local mean (IW-NLM) filtering method that adopts an SSI-based adaptive h-solving method to select the optimal h in the weight function. The analysis shows that the algorithm not only denoises the laser image but also smooths pixel jumps in the image, while preserving the image details. The experimental results show that compared with the original laser image, the equivalent number of looks (ENL) index of the IW-NLM filtered image improved by 0.80%. The speckle suppression index (SSI) of local images dropped from 4.69 to 2.55%. Compared with non-local mean filtering algorithms, the algorithm proposed in this paper is an improvement and provides more accurate data support for subsequent image processing analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...