Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Microb Biotechnol ; 17(1): e14379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085112

RESUMO

Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.


Assuntos
Edwardsiella tarda , Resistência a Tetraciclina , Humanos , Edwardsiella tarda/metabolismo , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Força Próton-Motriz , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Bactérias/metabolismo
2.
Int J Antimicrob Agents ; 63(1): 107036, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981076

RESUMO

OBJECTIVES: Elucidating antibiotic resistance mechanisms is necessary for developing novel therapeutic strategies. The increasing incidence of antibiotic-resistant Vibrio alginolyticus infection threatens both human health and aquaculture, but the mechanism has not been fully elucidated. METHODS: Here, an isobaric tags for relative and absolute quantification (iTRAQ) functional proteomics analysis was performed on gentamicin-resistant V. alginolyticus (VA-RGEN) and a gentamicin-sensitive strain in order to characterize the global protein expression changes upon gentamicin resistance. Then, the bacterial killing assay and bacterial gentamicin pharmacokinetics were performed. RESULTS: Proteomics analysis demonstrated a global metabolic downshift in VA-RGEN, where the pyruvate cycle (the P cycle) was severely compromised. Exogenous pyruvate restored the P cycle activity, disrupting the redox state and increasing the membrane potential. It thereby potentiated gentamicin-mediated killing by approximately 3000- and 150-fold in vitro and in vivo, respectively. More importantly, bacterial gentamicin pharmacokinetics indicated that pyruvate enhanced gentamicin influx to a degree that exceeded the gentamicin expelled by the bacteria, increasing the intracellular gentamicin. CONCLUSION: Thus, our study suggests a metabolism-based approach to combating gentamicin-resistant V. algonolyticus, which paves the way for combating other types of antibiotic-resistant bacterial pathogens.


Assuntos
Antibacterianos , Gentamicinas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Gentamicinas/farmacologia , Vibrio alginolyticus/metabolismo , Ácido Pirúvico/metabolismo , Transporte Biológico
3.
Front Microbiol ; 14: 1276954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029124

RESUMO

Introduction: Glucose level is related to antibiotic resistance. However, underlying mechanisms are largely unknown. Methods: Since glucose transport is performed by phosphotransferase system (PTS) in bacteria, pts promoter-deleted K12 (Δpts-P) was used as a model to investigate effect of glucose metabolism on antibiotic resistance. Gas chromatography-mass spectrometry based metabolomics was employed to identify a differential metabolome in Δpts-P compared with K12, and with glucose as controls. Results: Δpts-P exhibits the resistance to ß-lactams and aminoglycosides but not to quinolones, tetracyclines, and macrolide antibiotics. Inactivated pyruvate cycle was determined as the most characteristic feature in Δpts-P, which may influence proton motive force (PMF), reactive oxygen species (ROS), and nitric oxide (NO) that are related to antibiotic resistance. Thus, they were regarded as three ways for the following study. Glucose promoted PMF and ß-lactams-, aminoglycosides-, quinolones-mediated killing in K12, which was inhibited by carbonyl cyanide 3-chlorophenylhydrazone. Exogenous glucose did not elevated ROS in K12 and Δpts-P, but the loss of pts promoter reduced ROS by approximately 1/5, which was related to antibiotic resistance. However, NO was neither changed nor related to antibiotic resistance. Discussion: These results reveal that pts promoter regulation confers antibiotic resistance via PMF and ROS in Escherichia coli.

4.
EMBO Rep ; 24(12): e49561, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37943703

RESUMO

Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.


Assuntos
Alanina , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/genética , Proteômica , Fagocitose , Bactérias/metabolismo , Palmitatos
5.
Front Microbiol ; 14: 1267729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915850

RESUMO

Introduction: Bacterial metabolic environment influences antibiotic killing efficacy. Thus, a full understanding for the metabolic resistance mechanisms is especially important to combat antibiotic-resistant bacteria. Methods: Isobaric tags for relative and absolute quantification-based proteomics approach was employed to compare proteomes between ceftazidime-resistant and -sensitive Edwarsiella tarda LTB4 (LTB4-RCAZ and LTB4-S, respectively). Results: This analysis suggested the possibility that the ceftazidime resistance mediated by depressed glucose is implemented through an inefficient metabolic flux from glycolysis, the pyruvate cycle, glutamate metabolism to purine metabolism. The inefficient flux was demonstrated by the reduced expression of genes and the decreased activity of enzymes in the four metabolic pathways. However, supplement upstream glucose and downstream guanosine separately restored ceftazidime killing, which not only supports the conclusion that the inefficient metabolic flux is responsible for the resistance, but also provides an effective approach to reverse the resistance. In addition, the present study showed that ceftazidime is bound to pts promoter in E. tarda. Discussion: Our study highlights the way in fully understanding metabolic resistance mechanisms and establishing metabolites-based metabolic reprogramming to combat antibiotic resistance.

6.
Drug Discov Today ; 28(10): 103753, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640151

RESUMO

Existing antibacterial agents can be categorized into two generations, but bacterial insensitivity towards both of these generations poses a serious public health challenge worldwide. Thus, novel approaches and/or novel antibacterials are urgently needed to maintain a concentration of antibacterials that is lethal to bacteria that are resistant to existing antibiotic treatments. Metabolite(s)-based adjuvants that promote antibiotic uptake and enhance antibiotic efficacy are an effective strategy that is unlikely to develop resistance. Thus, we propose a metabolite(s)-based approach, in which metabolites and antibacterials are combined, as a promising strategy for the development of next-generation agents to combat a variety of antibiotic-resistant pathogens.


Assuntos
Antibacterianos , Bactérias , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transporte Biológico , Saúde Pública
7.
Front Immunol ; 14: 1170166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063884

RESUMO

Vaccination is an effective measure to prevent infection by pathogens. Live vaccines have higher protective efficacy than inactivated vaccines. However, how live vaccines interact with the host from a metabolic perspective is unknown. The present study aimed to explore whether a live Edwardsiella tarda vaccine regulates host metabolism and whether this regulation is related to the protective efficacy of the vaccine. Therefore, a gas chromatography mass spectrometry (GC-MS)-based metabolomics approach was used to investigate the metabolomic profile of mice serum after vaccination with live E. tarda vaccine. Fructose was identified as a key biomarker that contributes to the immune protection induced by the live vaccine. Moreover, co-administration of exogenous fructose and the live vaccine synergistically promoted survival of mice and fish after bacterial challenge. These results indicate that metabolites, especially fructose, can potentiate the live E. tarda vaccine to increase its protective efficiency.


Assuntos
Infecções por Enterobacteriaceae , Linguados , Animais , Infecções por Enterobacteriaceae/prevenção & controle , Edwardsiella tarda , Anticorpos Antibacterianos , Vacinas Bacterianas , Vacinas Atenuadas
8.
Sci Adv ; 9(10): eade8582, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888710

RESUMO

The mechanism(s) of how bacteria acquire tolerance and then resistance to antibiotics remains poorly understood. Here, we show that glucose abundance decreases progressively as ampicillin-sensitive strains acquire resistance to ampicillin. The mechanism involves that ampicillin initiates this event via targeting pts promoter and pyruvate dehydrogenase (PDH) to promote glucose transport and inhibit glycolysis, respectively. Thus, glucose fluxes into pentose phosphate pathway to generate reactive oxygen species (ROS) causing genetic mutations. Meanwhile, PDH activity is gradually restored due to the competitive binding of accumulated pyruvate and ampicillin, which lowers glucose level, and activates cyclic adenosine monophosphate (cAMP)/cAMP receptor protein (CRP) complex. cAMP/CRP negatively regulates glucose transport and ROS but enhances DNA repair, leading to ampicillin resistance. Glucose and Mn2+ delay the acquisition, providing an effective approach to control the resistance. The same effect is also determined in the intracellular pathogen Edwardsiella tarda. Thus, glucose metabolism represents a promising target to stop/delay the transition of tolerance to resistance.


Assuntos
Ampicilina , Bactérias , Espécies Reativas de Oxigênio/metabolismo , Ampicilina/farmacologia , Bactérias/metabolismo , Glucose/metabolismo , Piruvatos
9.
Front Microbiol ; 13: 1071278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532472

RESUMO

Introduction: Gentamicin is a conventional antibiotic in clinic. However, with the wide use of antibiotics, gentamicin-resistant Escherichia coli (E. coli) is an ever-increasing problem that causes infection in both humans and animals. Thus, it is especially important to restore gentamicin-mediated killing efficacy. Method: E. coli K12 BW25113 cells were passaged in medium with and without gentamicin and obtain gentamicin-resistant (K12-R GEN ) and control (K12-S) strains, respectively. Then, the metabonomics of the two strains were analyzed by GC-MS approach. Results: K12-R GEN metabolome was characterized as more decreased metabolites than increased metabolites. Meantime, in the most enriched metabolic pathways, almost all of the metabolites were depressed. Alanine, aspartate and glutamate metabolism and glutamine within the metabolic pathway were identified as the most key metabolic pathways and the most crucial biomarkers, respectively. Exogenous glutamine potentiated gentamicin-mediated killing efficacy in glutamine and gentamicin dose-and time-dependent manners in K12-R GEN . Further experiments showed that glutamine-enabled killing by gentamicin was effective to clinically isolated multidrug-resistant E. coli. Discussion: These results suggest that glutamine provides an ideal metabolic environment to restore gentamicin-mediated killing, which not only indicates that glutamine is a broad-spectrum antibiotic synergist, but also expands the range of metabolites that contribute to the bactericidal efficiency of aminoglycosides.

10.
Fish Shellfish Immunol ; 131: 172-180, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210004

RESUMO

Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of double-stranded RNA (dsRNA) that activates anti-infective innate immunity. The underlying mechanisms are identified as targeting pattern recognition receptors and Th1-inducing. However, whether poly I:C manipulates metabolism to implement this anti-infective function is unknown. Here, GC-MS based metabolomics was used to characterize metabolic profiles induced by different doses of poly I:C. Analysis on the dose-dependent metabolomes shows that elevation of the TCA cycle and malate with the increasing dose of ploy I:C forms the most characteristic feature of the poly I:C stimulation. Exogenous malate activates the TCA cycle and elevates survival of zebrafish infected with Vibrio alginolyticus, which is related to the elevated expression of il-1b, il-6, il-8, tnf-a, and c3b. These results reveal a previously unknown regulation of poly I:C that boosts the TCA cycle to enhance innate immunity against bacterial infection.


Assuntos
Infecções Bacterianas , Poli I-C , Animais , Poli I-C/farmacologia , Malatos , Peixe-Zebra/genética , Imunidade Inata , RNA de Cadeia Dupla
11.
Front Microbiol ; 13: 1003586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160231

RESUMO

Bacterial metabolism is related to resistance and susceptibility to antibiotics. Fumarate and nitrate reduction regulatory protein (FNR) is a global transcriptional regulator that regulates metabolism. However, the role of FNR in antibiotic resistance is elusive. Here, fnr deletion mutant was constructed and used to test the role in Edwardsiella tarda EIB202 (EIB202). Δfnr exhibited elevated sensitivity to aminoglycosides. The mutant had a globally enhanced metabolome, with activated alanine, aspartate, and glutamate metabolism and increased abundance of glutamic acid as the most impacted pathway and crucial biomarker, respectively. Glutamate provides a source for the pyruvate cycle (the P cycle) and thereby relationship between exogenous glutamate-activated P cycle and gentamicin-mediated killing was investigated. The activated P cycle elevated proton motive force (PMF). Consistently, exogenous glutamate potentiated gentamicin-mediated killing to EIB202 as the similarity as the loss of FNR did. These findings reveal a previously unknown regulation by which FNR downregulates glutamate and in turn inactivates the P cycle, which inhibits PMF and thereby exhibits the resistance to aminoglycosides.

12.
Front Oncol ; 12: 938234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176418

RESUMO

Metabolomics has been reported as an efficient tool to screen biomarkers that are related to esophageal cancer. However, the metabolic biomarkers identifying malignant degrees and therapeutic efficacy are still largely unknown in the disease. Here, GC-MS-based metabolomics was used to understand metabolic alteration in 137 serum specimens from patients with esophageal cancer, which is approximately two- to fivefold as many plasma specimens as the previous reports. The elevated amino acid metabolism is in sharp contrast to the reduced carbohydrate as a characteristic feature of esophageal cancer. Comparative metabolomics showed that most metabolic differences were determined between the early stage (0-II) and the late stage (III and IV) among the 0-IV stages of esophageal cancer and between patients who received treatment and those who did not receive treatment. Glycine, serine, and threonine metabolism and glycine were identified as the potentially overlapped metabolic pathway and metabolite, respectively, in both disease progress and treatment effect. Glycine, fructose, ornithine, and threonine can be a potential array for the evaluation of disease prognosis and therapy in esophageal cancer. These results highlight the means of identifying previously unknown biomarkers related to esophageal cancer by a metabolomics approach.

13.
PLoS Pathog ; 18(8): e1010796, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026499

RESUMO

Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1ß and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1ß and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.


Assuntos
Infecções Bacterianas , Lipopolissacarídeos , Animais , Citocinas , Inosina/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Fagocitose , Ácido Succínico
14.
Front Mol Biosci ; 9: 878651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832740

RESUMO

Because, as of yet, there are few new antibiotics active against multidrug-resistant bacteria are being explored, compounds including metabolites that might help us tide over this crisis are greatly expected. A recently adopted method to evaluate the potentiation of metabolites is the plate-counting test. However, the method is time-consuming, strenuous, and unfeasible for a large scale of screening. A minimum inhibitory concentration (MIC) test by using a microtitre plate dilution method is convenient and economic for a large scale of identification, but it cannot be used to detect the potentiation. Here, the microtitre plate dilution method was modified to develop a novel test for evaluating metabolites that enable the killing of bacterial pathogens by antibiotics, designed as minimum killing concentration (MKC). To do this, bacterial number, incubation time, ionic strength of M9 medium, and inosine concentration are optimized using Escherichia coli. Different from the MIC test, which uses 5 × 104 CFU cells and performed in LB medium, the MKC test needed 1 × 107 CFU - 2 × 107 CFU cells and was carried out in M9 medium. Moreover, MKC test was suitable for bactericidal antibiotics such as cephalosporins, penicillins and carbapenems and was proportional to the plate-counting test. The developed MKC test was feasible for different metabolites and clinically multidrug-resistant pathogens, and measurement of minimum bactericidal concentration (MBC). Therefore, the MKC test was developed to accelerate the identification of compounds that promote antibiotic-mediated killing efficacy.

15.
Microbiol Spectr ; 10(4): e0232721, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863024

RESUMO

Cefoperazone-sulbactam (SCF)-resistant Pseudomonas aeruginosa poses a big challenge in the use of SCF to treat infection caused by the pathogen. We have recently shown exogenous nitrite-enabled killing of naturally and artificially evolved Pseudomonas aeruginosa strains (AP-RCLIN-EVO and AP-RLAB-EVO, respectively) by SCF. However, the underlying mechanism is unknown. Here, reprogramming metabolomics was adopted to investigate how nitrite enhanced the SCF-mediated killing efficacy. Nitrite-reprogrammed metabolome displayed an activated pyruvate cycle (P cycle), which was confirmed by elevated activity of pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. The activated P cycle provided NADH for the electron transport chain and thereby increased reactive oxygen species (ROS), which potentiated SCF to kill AP-RCLIN-EVO and AP-RLAB-EVO. The nitrite-enabled killing of AP-RCLIN-EVO and AP-RLAB-EVO by SCF was inhibited by PDH inhibitor furfural and ROS scavenger N-Acetyl-L-cysteine but promoted by ROS promoter Fe3+. SCF alone could not induce ROS, but SCF-mediated killing efficacy was enhanced by ROS. In addition, the present study demonstrated that nitrite repressed antioxidants, which were partly responsible for the elevated ROS. These results reveal a nitrite-reprogrammed metabolome mechanism by which AP-RCLIN-EVO and AP-RLAB-EVO sensitivity to SCF is elevated. IMPORTANCE Antibiotic-resistant Pseudomonas aeruginosa has become a real concern in hospital-acquired infections, especially in critically ill and immunocompromised patients. Understanding antibiotic resistance mechanisms and developing novel control measures are highly appreciated. We have recently shown that a reduced nitrite-dependent NO biosynthesis contributes to cefoperazone-sulbactam (SCF) resistance, which is reverted by exogenous nitrite, in both naturally and artificially evolved P. aeruginosa strains (AP-RCLIN-EVO and AP-RLAB-EVO, respectively). However, the mechanism is unknown. The present study reports that the nitrite-enabled killing of AP-RCLIN-EVO and AP-RLAB-EVO by SCF is attributed to the promoted production of reactive oxygen species (ROS). Nitrite activates the pyruvate cycle to generate NADH for the electron transport chain, which in turn promotes ROS generation. Nitrite-potentiated SCF-mediated killing is decreased by pyruvate dehydrogenase inhibitor furfural and ROS scavenger N-Acetyl-L-cysteine but increased by ROS promoter Fe3+. Furthermore, SCF-mediated killing is promoted by H2O2 in a dose-dependent manner. In addition, the combination of nitrite and H2O2 greatly enhances SCF-mediated killing. These results not only disclose a nitrite-ROS-potentiated SCF-mediated killing, but also show SCF-mediated killing is dependent upon ROS.


Assuntos
Cefoperazona , Sulbactam , Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefoperazona/farmacologia , Furaldeído , Humanos , Peróxido de Hidrogênio , NAD , Nitritos/farmacologia , Oxirredutases , Pseudomonas aeruginosa/genética , Piruvatos , Espécies Reativas de Oxigênio , Sulbactam/farmacologia
16.
Front Microbiol ; 13: 847634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308347

RESUMO

Metabolic shift and antibiotic resistance have been reported in Pseudomonas aeruginosa. However, the global metabolic characteristics remain largely unknown. The present study characterizes the central carbon metabolism and its effect on other metabolic pathways in cefoperazone-sulbactam (SCF)-resistant P. aeruginosa (PA-RSCF). GC-MS-based metabolomics shows a repressed central carbon metabolism in PA-RSCF, which is confirmed by measuring expression of genes and activity of enzymes in the metabolism. Furthermore, expression of the genes that encode the enzymes for the first step of fatty acid biosynthesis, glutamate metabolism, and electron transport chain is reduced, confirmed by their enzymatic activity assay, and the key enzyme for riboflavin metabolism is also reduced, indicating the decreased metabolic flux to the four related metabolic pathways. Moreover, the role of the reduced riboflavin metabolism, being related to ROS generation, in SCF resistance is explored. Exogenous H2O2 potentiates SCF-mediated killing in a dose-dependent manner, suggesting that the decreased ROS resulted from the reduced riboflavin metabolism that contributed to the resistance. These results indicate that the repressed central carbon metabolism and related riboflavin metabolism contribute to SCF resistance, but increasing ROS can restore SCF sensitivity. These findings characterize the repressed central carbon metabolism and its effect on other metabolic pathways as the global metabolic features in PA-RSCF.

17.
Front Immunol ; 12: 739591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950133

RESUMO

Vaccines are safe and efficient in controlling bacterial diseases in the aquaculture industry and are in line with green farming. The present study develops a previously unreported approach to prepare a live-attenuated V. alginolyticus vaccine by culturing bacteria in a high concentration of magnesium to attenuate bacterial virulence. Furthermore, metabolomes of zebrafish immunized with the live-attenuated vaccines were compared with those of survival and dying zebrafish infected by V. alginolyticus. The enhanced TCA cycle and increased fumarate were identified as the most key metabolic pathways and the crucial biomarker of vaccine-mediated and survival fish, respectively. Exogenous fumarate promoted expression of il1ß, il8, il21, nf-κb, and lysozyme in a dose-dependent manner. Among the five innate immune genes, the elevated il1ß, il8, and lysozyme are overlapped in the vaccine-immunized zebrafish and the survival from the infection. These findings highlight a way in development of vaccines and exploration of the underlying mechanisms.


Assuntos
Vacinas Bacterianas/imunologia , Ciclo do Ácido Cítrico/imunologia , Magnésio/imunologia , Vibrio alginolyticus/imunologia , Animais , Vacinas Atenuadas/imunologia , Peixe-Zebra/imunologia
18.
Sci Transl Med ; 13(625): eabj0716, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936385

RESUMO

The prevalence of multidrug-resistant bacteria has been increasing rapidly worldwide, a trend that poses great risk to human and animal health and creates urgent need for pharmaceutical and nonpharmaceutical approaches to stop the spread of disease due to antimicrobial resistance. Here, we found that alanine, aspartate, and glutamate metabolism was inactivated, and glutamine was repressed in multidrug-resistant uropathogenic Escherichia coli using a comparative metabolomics approach. Exogenous glutamine promoted ß-lactam­, aminoglycoside-, quinolone-, and tetracycline-induced killing of uropathogenic E. coli and potentiated ampicillin to eliminate multidrug-resistant Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella peneumoniae, Edwardsiella tarda, Vibrio alginolyticus, and Vibrio parahaemolyticus. Glutamine-potentiated ampicillin-mediated killing was effective against biofilms of these bacteria in a mouse urinary tract infection model and against systemic infection caused by E. coli, P. aeruginosa, A. baumannii, or K. peneumoniae in a mouse model. Exogenous glutamine stimulated influx of ampicillin, leading to the accumulation of intracellular antibiotic concentrations that exceeded the amount tolerated by the multidrug-resistant bacteria. Furthermore, we demonstrated that exogenous glutamine promoted the biosynthesis of nucleosides including inosine, which in turn interacted with CpxA/CpxR and up-regulated OmpF. We validated the physiological relevance of the mechanism by showing that loss of purF, purH, cpxA, or ompF elevated antibiotic resistance in antibiotic-sensitive strains. In addition, glutamine retarded the development of ampicillin resistance. These results may facilitate future development of effective approaches for preventing or managing chronic, multidrug-resistant bacterial infections, bacterial persistence, and difficult-to-treat bacterial biofilms.


Assuntos
Antibacterianos , Glutamina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Camundongos , Testes de Sensibilidade Microbiana
19.
Front Immunol ; 12: 736360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671354

RESUMO

Bacterial infections cause huge losses in aquaculture and a wide range of health issues in humans. A vaccine is the most economical, efficient, and environment-friendly agent for protecting hosts against bacterial infections. This study aimed to identify broad, cross-protective antigens from the extracellular secretory proteome of the marine bacterium Vibrio alginolyticus. Of the 69 predicted extracellular secretory proteins in its genome, 16 were randomly selected for gene cloning to construct DNA vaccines, which were used to immunize zebrafish (Danio rerio). The innate immune response genes were also investigated. Among the 16 DNA vaccines, 3 (AT730_21605, AT730_22220, and AT730_22910) were protective against V. alginolyticus infection with 47-66.7% increased survival compared to the control, while other vaccines had lower or no protective effects. Furthermore, AT730_22220, AT730_22910, and AT730_21605 also exhibited cross-immune protective effects against Pseudomonas fluorescens and/or Aeromonas hydrophila infection. Mechanisms for cross-protective ability was explored based on conserved epitopes, innate immune responses, and antibody neutralizing ability. These results indicate that AT730_21605, AT730_22220, and AT730_22910 are potential polyvalent vaccine candidates against bacterial infections. Additionally, our results suggest that the extracellular secretory proteome is an antigen pool that can be used for the identification of cross-protective immunogens.


Assuntos
Antígenos de Bactérias/farmacologia , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/farmacologia , Desenvolvimento de Vacinas , Vacinas Combinadas/farmacologia , Vibrio alginolyticus/imunologia , Animais , Anticorpos Antibacterianos/metabolismo , Anticorpos Neutralizantes/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunidade Inata/efeitos dos fármacos , Imunização , Imunogenicidade da Vacina , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/prevenção & controle , Vibrio alginolyticus/genética , Peixe-Zebra
20.
mSystems ; 6(5): e0073221, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546070

RESUMO

Metabolic flexibility of Pseudomonas aeruginosa could lead to new strategies to combat bacterial infection. The present study used gas chromatography-mass spectrometry (GC-MS)-based metabolomics to investigate global metabolism in naturally and artificially evolved strains with cefoperazone-sulbactam (SCF) resistance (AP-RCLIN-EVO and AP-RLAB-EVO, respectively) from the same parent strain (AP-RCLIN). Inactivation of the pyruvate cycle and nitric oxide (NO) biosynthesis was identified as characteristic features of SCF resistance in both evolved strains. Nitrite-dependent NO biosynthesis instead of an arginine-dependent NO pathway is responsible for the reduced NO, which is attributed to lower nitrite and electrons from the oxidation of NADH to NAD+ provided by the pyruvate cycle. Exogenous fumarate, NADH, nitrate, and nitrite promoted the NO level and thereby potentiated SCF-mediated killing. Unexpectedly, fumarate caused the elevation of nitrite, while nitrite/nitrate resulted in the increase of Cyt bc1 complex (providing electrons). These interesting findings indicate that the nitrite-dependent NO biosynthesis and the pyruvate cycle are mutual to promote NO metabolism. In addition, the NO-potentiated sensitivity to SCF was validated by NO donor sodium nitroprusside. These results reveal an endogenous NO-mediated SCF resistance and develop its reversion by metabolites in P. aeruginosa. IMPORTANCE Infections with Pseudomonas aeruginosa have become a real concern among hospital-acquired infections, especially in cystic fibrosis patients and immunocompromised individuals. Control of the pathogen is challenging due to antibiotic resistance. Since bacterial metabolic state impacts sensitivity and resistance to antibiotics, exploring and disclosing bacterial metabolic mechanisms can be used to develop a metabolome-reprogramming approach to elevate bacterial sensitivity to antibiotics. Therefore, GC-MS-based metabolomics is used to explore the similarities and differences of metabolomes between naturally and artificially evolved cefoperazone-sulbactam (SCF)-resistant P. aeruginosa (AP-RCLIN-EVO and AP-RLAB-EVO, respectively) from the same parent strain (AP-RCLIN). It identifies the depressed nitrite-dependent nitric oxide (NO) biosynthesis as the most overlapping characteristic feature between AP-RCLIN-EVO and AP-RLAB-EVO. This is because the pyruvate cycle fluctuates, thereby generating fewer NADH and providing fewer electrons for nitrite-dependent NO biosynthesis than the control. Interestingly, exogenous fumarate, NADH, nitrate, and nitrite as well as NO donor sodium nitroprusside promote NO generation to elevate sensitivity to SCF. These results highlight the way to understand metabolic mechanisms of antibiotic resistance and explore metabolic modulation to combat the bacterial pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...