Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6834, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122713

RESUMO

In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.

2.
Micromachines (Basel) ; 15(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39064353

RESUMO

A frequency up-conversion piezoelectric energy harvester (FUC-PEH) consists of a force amplifier, a piezoelectric stack, a low-frequency oscillator (LFO), and a stop limiter. The force amplifier generates the amplification of stress on the piezoelectric stack. The LFO, comprising a spring and a mass block, impacts the stop limiter during vibration to induce high-frequency oscillations within the piezoelectric stack. In this paper, we represent and simplify the FUC-PEH as a lumped-parameter model based on piezoelectric material constitutive equations and structural dynamic theories. Using the electromechanical analogy, we developed an equivalent circuit model (ECM) of the FUC-PEH. A parametric study was performed to investigate the impact of system parameters, such as spring stiffness and concentrated mass, on the FUC-PEH performance. The collision-induced amplitude truncation (AT) effect enlarges the operation bandwidth. ECM simulations show that low-frequency input excitation is converted into a high-frequency output response, enhancing the energy conversion efficiency. Furthermore, we aimed to improve the FUC-PEH's performance using a synchronous electric charge extraction (SECE) circuit. Using the ECM approach, we established a system-level model that considers the electromechanical coupling behavior. The simulation results provide insights into the performance of FUC harvesters with SECE circuits and offer valuable design guidance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA