Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hypertens ; 42(3): 460-470, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009301

RESUMO

OBJECTIVE: Hypertension is linked to gut dysbiosis. Here, the impact of the angiotensin receptor antagonist irbesartan on the gut microbiota of spontaneously hypertensive rats (SHR) were investigated. In addition, we assessed their contribution to its antihypertensive effect. METHODS: Eight-week-old Wistar-Kyoto (WKY) rats and SHR were administered irbesartan for 8 weeks. Fecal microbiota transplantation (FMT) was performed from SHR treated with irbesartan or untreated SHR to recipient untreated SHR. The preventive effect of Lactobacillus on hypertension in SHR was evaluated. Blood pressure (BP) was calculated using a tail-sleeve sphygmomanometer. To better assess the composition of the gut microbiota, the V3-V4 region of the 16S rRNA gene was amplified while short-chain fatty acids (SCFAs) in feces were tested by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS: Irbesartan restored gut dysbiosis, increased the abundance of Lactobacillus , and improved anti-inflammatory ability, antioxidative ability, intestinal integrity, and intestinal inflammation in SHR. The microbiota in SHR-treated irbesartan could reduce BP and improve antioxidative ability and gut integrity in SHR. Lactobacillus johnsonii ( L. johnsonii ) and Lactobacillus reuteri ( L. reuteri ) reduced BP, restored gut dysbiosis and improved anti-inflammatory ability, antioxidative ability, intestinal integrity in SHR. Most notably, irbesartan, L. johnsonii , and L. reuteri can significantly increase SCFA content in SHR feces. CONCLUSION: The current study demonstrated that irbesartan treatment ameliorated gut dysbiosis in SHR. Irbesartan induced alterations in gut microbiota, with increased prevalence of Lactobacillus .


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Irbesartana/uso terapêutico , Ratos Endogâmicos SHR , Lactobacillus/genética , Cromatografia Líquida , Disbiose , RNA Ribossômico 16S , Ratos Endogâmicos WKY , Espectrometria de Massas em Tandem , Pressão Sanguínea , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Comput Struct Biotechnol J ; 23: 87-95, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116074

RESUMO

Despite extensive research on the gut microbiome of healthy individuals from a single country, there are still a limited number of population-level comparative studies. Moreover, the sequencing approach used in most related studies involves 16 S ribosomal RNA (rRNA) sequencing with a limited resolution, which cannot provide detailed functional profiles. In the present study, we applied a combined analysis approach to analyze whole metagenomic shotgun sequencing data from 2035 healthy adult samples from six countries across four continents. Analysis of core species revealed that 13 species were present in more than 90 % of all investigated individuals, the majority of which produced short-chain fatty acids (SCFA)-producing bacteria. Our analysis revealed consistently significant differences in gut microbial species and pathways between Western and non-Western countries, such as Escherichia coli and the relation of MetaCyc pathways to the TCA cycle. Specific changes in microbial species and pathways are potentially related to lifestyle and diet. Furthermore, we identified several noteworthy microbial species and pathways that exhibit distinct characteristics specific to China. Interestingly, we observed that China (CHN) was more similar to the United States (USA) and United Kingdom (GBR) in terms of the taxonomic and functional composition of the gut microbiome than India (IND) and Madagascar (MDG), which were more similar to the China (CHN) diet. The current study identified consistent microbial features associated with population and geography, which will inspire further clinical translations that consider paying attention to differences in microbiota backgrounds and confounding factors.

3.
Nutrients ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571344

RESUMO

In this study, we collected data from the National Health and Nutrition Examination Survey (NHANES) for the years 2011-2014. Multiple linear regression and logistic regression were used to analyse the association between nonfood pro- or prebiotic use and cognitive function among elderly Americans. To estimate the potential unobserved results, propensity score matching (PSM) was used to analyse the causal effect. Nonfood pro- or prebiotic use was analysed through the Dietary Supplement Use 30-Day Study. Cognitive function was evaluated by the Digit Symbol Substitution Test (DSST), the Animal Fluency Test (AFT), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), and a composite Z-score calculated by summing the Z-scores of three tests. Male participants who used nonfood pro- or prebiotics tended to have higher comprehensive cognitive function (sum.z) with a ß-coefficient of 0.64 (95% CI: 0.08-1.19). Probiotics or prebiotics may be a protective factor against cognitive impairment in males, with an odds ratio of 0.08 (95% CI: 0.02-0.29). Furthermore, the average treatment effect for the treated (ATT) with nonfood pro- or prebiotics (0.555) on sum.z in males was statistically significant (p < 0.05). Our research revealed that nonfood pre- or probiotic use was an effective method to improve cognitive function in elderly men from the USA.


Assuntos
Disfunção Cognitiva , Probióticos , Masculino , Estados Unidos/epidemiologia , Humanos , Inquéritos Nutricionais , Prebióticos , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...