Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diabetes Investig ; 15(1): 34-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041572

RESUMO

AIMS/INTRODUCTION: Different types of diabetes show distinct genetic characteristics, but the specific genetic susceptibility factors remain unclear. Our study aimed to explore the associations between the ribosomal protein S26 (RPS26) gene rs1131017 polymorphisms and susceptibility to type 1 diabetes mellitus, latent autoimmune diabetes in adults (LADA) and type 2 diabetes mellitus in the Chinese Han population, and their correlations with clinical features. MATERIALS AND METHODS: Genotyping of the rs1131017 variant was carried out for 1,006 type 1 diabetes mellitus patients, 210 LADA patients, 642 type 2 diabetes mellitus patients and 2,099 control individuals. RESULTS: We found that the rs1131017 C allele was a risk locus for both type 1 diabetes mellitus and LADA (odds ratio [OR] 1.50, 95% confidence interval [CI] 1.33-1.69, P < 0.001; OR 1.31, 95% CI 1.04-1.64, P = 0.021, respectively). Nevertheless, this association was not found for type 2 diabetes mellitus. Carrying the C allele genotype was associated with a lower postprandial C-peptide for type 1 diabetes mellitus (OR 1.41, 95% CI 1.11-1.80, P = 0.006) and lower fasting C-peptide for LADA (OR 1.55, 95% CI 1.01-2.38, P = 0.047). Interestingly, a lower GC frequency was noted for LADA than for type 1 diabetes mellitus, regardless of classification based on age at diagnosis, C-peptide or glutamic acid decarboxylase antibody positivity. CONCLUSIONS: The RPS26 polymorphism was associated with susceptibility and clinical characteristics of type 1 diabetes mellitus and LADA in the Chinese population, but was not related to type 2 diabetes mellitus. Thus, it might serve as a novel biomarker for particular types of diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Autoimune Latente em Adultos , Adulto , Humanos , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Peptídeo C , Polimorfismo Genético , China/epidemiologia , Autoanticorpos
2.
Adv Sci (Weinh) ; 10(24): e2300383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340596

RESUMO

Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Endométrio , Feminino , Animais , Camundongos , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Mutação/genética , Modelos Animais
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 505-509, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248575

RESUMO

The tumor microenvironment (TME), the environment of tumorigenesis and tumor progression, incorporates multiple types of cells and non-cellular components. TME plays an important role in tumorigenesis and tumor progression. Due to the abnormal proliferation of tumors, the TME has a unique chemophysiology environment and complex metabolic patterns, which subsequently affects the role of immune cells. Understanding the metabolic patterns of TME can help us develop immunotherapy regimens that target TME. Microbial metabolism and lipid metabolism, the key metabolic processes of TME, have emerged as important foci of research. The metabolites released by the microbiome and the reprogramming of cellular lipid metabolism affect the subsistence of tumor and immune cells. In this review, we summarized the composition and metabolic characteristics of TME and discussed the latest research progress in microbial metabolism and lipid metabolism in TME. We also provided an update on relevant metabolic regulatory targets and immunotherapy strategies, stressing that identifying highly effective therapeutic targets, in spite of the apparent difficulty, is what future research should be focused on.


Assuntos
Microbiota , Neoplasias , Humanos , Microambiente Tumoral , Metabolismo dos Lipídeos , Imunoterapia , Carcinogênese , Neoplasias/terapia
4.
Diabetes Metab Res Rev ; 39(2): e3592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36401613

RESUMO

AIMS: This study investigated insulinoma-associated-2 autoantibody (IA-2A) and zinc transporter 8 autoantibody (ZnT8A) distribution in patients with type 1 diabetes (T1D) and latent autoimmune diabetes (LAD) and the autoantibodies' association with clinical characteristics and HLA-DR-DQ genes. MATERIALS AND METHODS: This cross-sectional study recruited 17,536 patients with diabetes from 46 hospitals across China. A total of 189 patients with T1D and 58 patients with LAD with IA-2A positivity, 126 patients with T1D and 86 patients with LAD with ZnT8A positivity, and 231 patients with type 2 diabetes (T2D) were selected to evaluate islet autoantibodies, clinical phenotypes, and HLA-DR-DQ gene frequency. RESULTS: IA-2A was bimodally distributed in patients with T1D and LAD. Patients with low IA-2A titre LAD had lower fasting C-peptide (FCP) (p < 0.01), lower postprandial C-peptide (PCP) (p < 0.001), and higher haemoglobin A1c (HbA1c) levels (p < 0.05) than patients with T2D. Patients with high IA-2A titre LAD were younger than patients with low IA-2A titre LAD (p < 0.05). Patients with low IA-2A titre T1D had lower FCP (p < 0.01), lower PCP (p < 0.01), and higher HbA1c levels (p < 0.05) than patients with high IA-2A titre LAD. HLA-DR-DQ genetic analysis demonstrated that the frequency of susceptible HLA haplotypes was higher in IA-2A-positive patients (p < 0.001) than in patients with T2D. Patients with high ZnT8A titre LAD had lower FCP (p = 0.045), lower PCP (p = 0.023), and higher HbA1c levels (p = 0.009) and a higher frequency of total susceptible haplotypes (p < 0.001) than patients with low ZnT8A titre LAD. CONCLUSIONS: IA-2A in patients with T1D and LAD was bimodally distributed, and the presence of IA-2A could demonstrate partial LAD clinical characteristics. ZnT8A titre had a certain predictive value for islet functions in patients with LAD.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Insulinoma , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Transportador 8 de Zinco , Autoanticorpos , Estudos Transversais , Peptídeo C , Hemoglobinas Glicadas , Proteínas de Transporte de Cátions/genética , Antígenos HLA-DR , Glutamato Descarboxilase
5.
Front Immunol ; 13: 1030222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389736

RESUMO

The prognosis of human papillomavirus (HPV)-infected head and neck squamous cell carcinoma (HNSCC) is often better than that of HPV- cancer, which is possibly caused by the differences in their immune microenvironments. The contribution of macrophage, as a principal innate immune cell, to this phenomenon is still unclear. In this study, a single-cell atlas of 4,388 high-quality macrophages from 18 HPV- and 8 HPV+ HNSCC patients was constructed with single-cell RNA sequencing data. Eight macrophage subsets were identified from HNSCC, whereas their functional properties and developmental trajectory were delineated based on HPV status. Our results demonstrated that macrophages in HPV+ HNSCC exhibit stronger phagocytic ability, although the infiltration rate of macrophages decreased. From the results, a unique macrophage subset with TCR and CD3-specific signatures was identified from HPV-related HNSCC. These TCR+ macrophages potentially participate in the regulation of the TCR signaling pathway and phagocytosis. In conclusion, our results suggested that HPV could affect the infiltration rate, function, and differentiation of macrophages in HNSCC, whereas TCR+ macrophages play a critical role in the HNSCC microenvironment. These results provide new insights into the immune microenvironment of HNSCC and offer a valuable resource for the understanding of the immune landscape of HPV-related HNSCC, which will in turn help the development of immunotherapy strategies for the disease.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Macrófagos , Análise de Sequência de RNA , Receptores de Antígenos de Linfócitos T/genética , Microambiente Tumoral
6.
Cancer Cell ; 40(9): 1044-1059.e8, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099882

RESUMO

Cisplatin-based chemotherapy remains the primary treatment for unresectable and metastatic muscle-invasive bladder cancers (MIBCs). However, tumors frequently develop chemoresistance. Here, we established a primary and orthotopic MIBC mouse model with gene-edited organoids to recapitulate the full course of chemotherapy in patients. We found that partial squamous differentiation, called semi-squamatization, is associated with acquired chemoresistance in both mice and human MIBCs. Multi-omics analyses showed that cathepsin H (CTSH) is correlated with chemoresistance and semi-squamatization. Cathepsin inhibition by E64 treatment induces full squamous differentiation and pyroptosis, and thus specifically restrains chemoresistant MIBCs. Mechanistically, E64 treatment activates the tumor necrosis factor pathway, which is required for the terminal differentiation and pyroptosis of chemoresistant MIBC cells. Our study revealed that semi-squamatization is a type of lineage plasticity associated with chemoresistance, suggesting that differentiation via targeting of CTSH is a potential therapeutic strategy for the treatment of chemoresistant MIBCs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Bexiga Urinária , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Diferenciação Celular , Cisplatino , Humanos , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
7.
Front Immunol ; 13: 836952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392100

RESUMO

Epitope-specific GAD65Abs and HLA-DR-DQ gene assays help improve the value of risk stratification in autoimmune diabetes mellitus and protect islet function. Identification and early intervention are important for latent autoimmune diabetes in youth (LADY). The aims of this study were to investigate 1) the frequencies of the epitope-specific GAD65Abs and HLA-DR-DQ genes in LADY and 2) the association between HLA-DR-DQ genes and epitope-specific GAD65Abs. Higher frequencies of GAD65-CAb and multiepitope GAD65Abs were observed in young type 1 diabetes, LADY, and old type 1 diabetes subjects than those in latent autoimmune diabetes in adult (LADA) patients. The frequencies of the specific susceptible HLA haplotype DR3, total susceptible HLA haplotypes, and high-risk genotypes were higher in type 1 diabetes and LADY patients than those in LADA patients. In contrast, type 1 diabetes and LADY patients had lower frequencies of low/no genetic risk genotypes (DRX/X) than those of LADA patients. Logistic regression analysis suggested that the susceptible HLA haplotypes were risk factors for glutamic acid decarboxylase antibody (GADA) multiepitope positivity in autoimmune diabetes mellitus. LADY may be more severe than LADA, and LADY seemed to be a transitional type of type 1 diabetes and LADA. GADA epitope and HLA-DR-DQ gene assays are important for risk stratification in autoimmune diabetes mellitus and protection of islet function.


Assuntos
Diabetes Mellitus Tipo 1 , Intolerância à Glucose , Adolescente , Adulto , Autoanticorpos , Diabetes Mellitus Tipo 1/genética , Epitopos/genética , Patrimônio Genético , Antígeno HLA-DR3/genética , Humanos
8.
ACS Appl Mater Interfaces ; 13(18): 21030-21039, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905228

RESUMO

The characterization of circulating tumor cells (CTCs) by liquid biopsy has a great potential for precision medicine in oncology. Here, a universal and tandem logic-based strategy is developed by combining multiple nanomaterials and nanopore sensing for the determination of mucin 1 protein (MUC1) and breast cancer CTCs in real samples. The strategy consists of analyte-triggered signal conversion, cascaded amplification via nanomaterials including copper sulfide nanoparticles (CuS NPs), silver nanoparticles (Ag NPs), and biomaterials including DNA hydrogel and DNAzyme, and single-molecule-level detection by nanopore sensing. The amplification of the non-DNA nanomaterial gives this method considerable stability, significantly lowers the limit of detection (LOD), and enhances the anti-interference performance for complicated samples. As a result, the ultrasensitive detection of MUC1 could be achieved in the range of 0.0005-0.5 pg/mL, with an LOD of 0.1 fg/mL. Moreover, we further tested MUC1 as a biomarker for the clinical diagnosis of breast cancer CTCs under double-blind conditions on the basis of this strategy, and MCF-7 cells could be accurately detected in the range from 5 to 2000 cells/mL, with an LOD of 2 cells/mL within 6 h. The detection results of the 19 clinical samples were highly consistent with those of the clinical pathological sections, nuclear magnetic resonance imaging, and color ultrasound. These results demonstrate the validity and reliability of our method and further proved the feasibility of MUC1 as a clinical diagnostic biomarker for CTCs.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , DNA/metabolismo , Mucina-1/sangue , Nanoporos , Células Neoplásicas Circulantes , Humanos , Limite de Detecção , Células MCF-7 , Reprodutibilidade dos Testes
9.
J Neuroinflammation ; 18(1): 47, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602262

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used new-generation drugs for depression. Depressive symptoms are thought to be closely related to neuroinflammation. In this study, we used up-to-date protocols of culture and stimulation and aimed to understand how astrocytes respond to the antidepressants. METHODS: Primary astrocytes were isolated and cultured using neurobasal-based serum-free medium. The cells were treated with a cytokine mixture comprising complement component 1q, tumor necrosis factor α, and interleukin 1α with or without pretreatments of antidepressants. Cell viability, phenotypes, inflammatory responses, and the underlying mechanisms were analyzed. RESULTS: All the SSRIs, including paroxetine, fluoxetine, sertraline, citalopram, and fluvoxamine, show a visible cytotoxicity within the range of applied doses, and a paradoxical effect on astrocytic inflammatory responses as manifested by the promotion of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) and the inhibition of interleukin 6 (IL-6) and/or interleukin 1ß (IL-1ß). The SNRI venlafaxine was the least toxic to astrocytes and inhibited the production of IL-6 and IL-1ß but with no impact on iNOS and NO. All the drugs had no regulation on the polarization of astrocytic A1 and A2 types. Mechanisms associated with the antidepressants in astrocytic inflammation route via inhibition of JNK1 activation and STAT3 basal activity. CONCLUSIONS: The study demonstrated that the antidepressants possess differential cytotoxicity to astrocytes and function differently, also paradoxically for the SSRIs, to astrocytic inflammation. Our results provide novel pieces into understanding the differential efficacy and tolerability of the antidepressants in treating patients in the context of astrocytes.


Assuntos
Antidepressivos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Animais Recém-Nascidos , Antidepressivos/toxicidade , Astrócitos/patologia , Células Cultivadas , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...