Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.230
Filtrar
1.
Adv Mater ; : e2401693, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733317

RESUMO

Flexible metal-organic framework (MOF) adsorbents commonly encounter limitations in removing trace impurities below gate-opening threshold pressures. Topology reconfiguration can fundamentally eliminate intrinsic structural flexibility, yet remains a formidable challenge and is rarely achieved in practical applications. Herein, we present a solvent-mediated approach to regulate the flexible CuSnF6-dpds-sql (dpds = 4,4''-dipyridyldisulfide) with sql topology into rigid CuSnF6-dpds-cds with cds topology. Notably, the cds topology is unprecedented and firstly obtained in anion-pillared MOF materials. As a result, rigid CuSnF6-dpds-cds exhibits enhanced C2H2 adsorption capacity of 48.61 cm3 g-1 at 0.01 bar compared to flexible CuSnF6-dpds-sql (21.06 cm3 g-1). The topology transformation also facilitates the adsorption kinetics for C2H2, exhibiting a 6.5-fold enhanced diffusion time constant (D/r2) of 1.71 × 10-3 s-1 on CuSnF6-dpds-cds than that of CuSnF6-dpds-sql (2.64 × 10-4 s-1). Multiple computational simulations reveal the structural transformations and guest-host interactions in both adsorbents. Furthermore, dynamic breakthrough experiments demonstrate that high-purity C2H4 (>99.996%) effluent with a productivity of 93.9 mmol g-1 can be directly collected from C2H2/C2H4 (1/99, v/v) gas-mixture in a single CuSnF6-dpds-cds column. This article is protected by copyright. All rights reserved.

2.
Inorg Chem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718298

RESUMO

The Electrochemical reduction of nitrate to ammonia (NH3) is a process of great significance to energy utilization and environmental protection. However, it suffers from sluggish multielectron/proton-involved steps involving coupling reactions between different reaction intermediates and active hydrogen species (Hads) produced by water decomposition. In this study, a Ru-doped NiFe-MIL-53 (NiFeRu-MIL-53) supported on Ni foam (NF) has been designed for the nitrate reduction reaction (NO3RR). The NiFeRu-MIL-53 exhibits excellent NO3RR activity with a maximum Faradaic efficiency (FE) of 100% at -0.4 V vs. RHE for NH3 and a maximum NH3 yield of 62.39 mg h-1 cm-2 at -0.7 V vs. RHE in alkaline media. This excellent performance for the NO3RR is attributed to a strong synergistic effect between Ru and reconstructed NiFe(OH)2. Additionally, the doped Ru facilitates water dissociation, leading to an appropriate supply of Hads required for N species hydrogenation during NO3RR, thereby further enhancing its performance. Furthermore, in situ Raman analysis reveals that incorporating Ru facilitates the reconstruction of MOFs and promotes the formation of hydroxide active species during the NO3RR process. This work provides a valuable strategy for designing electrocatalysts to improve the efficiency of the reduction of electrochemical nitrate to ammonia.

3.
J Radiat Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718391

RESUMO

Lymphocytes, which are highly sensitive to radiation, play a crucial role in the body's defense against tumors. Radiation-induced lymphopenia has been associated with poorer outcomes in different cancer types. Despite being the largest secondary lymphoid organ, the spleen has not been officially designated as an organ at risk. This study hypothesizes a connection between spleen irradiation and lymphopenia and seeks to establish evidence-based dosage limits for the spleen. We retrospectively analyzed data from 96 patients with locally advanced gastric cancer who received postoperative chemoradiotherapy (CRT) between May 2010 and May 2017. Complete blood counts were collected before, during and after CRT. We established a model for predicting the minimum absolute lymphocyte count (Min ALC) and to investigate potential associations between spleen dosimetric variables and Min ALC. The median follow-up was 60 months. The 5-year overall survival (OS) and disease-free survival (DFS) were 65.2% and 56.8%, respectively. The median values of pre-treatment ALC, Min ALC and post-treatment ALC were 1.40 × 109, 0.23 × 109 and 0.28 × 109/L, respectively. Regression analysis confirmed that the primary tumor location, number of fractions and spleen V5 were significant predictors of Min ALC during radiation therapy. Changes in ALC (ΔALC) were identified as an independent predictor of both OS and DFS. Spleen V5 is an independent predictor for Min ALC, and the maximum dose of the spleen is associated with an increased risk of severe lymphopenia. Therefore, these doses should be restricted in clinical practice. Additionally, ΔALC can serve as a prognostic indicator for adjuvant radiotherapy in gastric cancer.

4.
Nat Commun ; 15(1): 3717, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697983

RESUMO

The chiral antiferromagnetic (AFM) materials, which have been widely investigated due to their rich physics, such as non-zero Berry phase and topology, provide a platform for the development of antiferromagnetic spintronics. Here, we find two distinctive anomalous Hall effect (AHE) contributions in the chiral AFM Mn3Pt, originating from a time-reversal symmetry breaking induced intrinsic mechanism and a skew scattering induced topological AHE due to an out-of-plane spin canting with respect to the Kagome plane. We propose a universal AHE scaling law to explain the AHE resistivity ( ρ A H ) in this chiral magnet, with both a scalar spin chirality (SSC)-induced skew scattering topological AHE term, a s k and non-collinear spin-texture induced intrinsic anomalous Hall term, b i n . We found that a s k and b i n can be effectively modulated by the interfacial electron scattering, exhibiting a linear relation with the inverse film thickness. Moreover, the scaling law can explain the anomalous Hall effect in various chiral magnets and has far-reaching implications for chiral-based spintronics devices.

5.
Med Biol Eng Comput ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700614

RESUMO

Electroencephalogram (EEG) signals are derived from the central nervous system and inherently difficult to camouflage, leading to the recent popularity of EEG-based emotion recognition. However, due to the non-stationary nature of EEG, inter-subject variabilities become obstacles for recognition models to well adapt to different subjects. In this paper, we propose a novel approach called semi-supervised bipartite graph construction with active EEG sample selection (SBGASS) for cross-subject emotion recognition, which offers two significant advantages. Firstly, SBGASS adaptively learns a bipartite graph to characterize the underlying relationships between labeled and unlabeled EEG samples, effectively implementing the semantic connection for samples from different subjects. Secondly, we employ active sample selection technique in this paper to reduce the impact of negative samples (outliers or noise in the data) on bipartite graph construction. Drawing from the experimental results with the SEED-IV data set, we have gained the following three insights. (1) SBGASS actively rejects negative labeled samples, which helps mitigate the impact of negative samples when constructing the optimal bipartite graph and improves the model performance. (2) Through the learned optimal bipartite graph in SBGASS, the transferability of labeled EEG samples is quantitatively analyzed, which exhibits a decreasing tendency as the distance between each labeled sample and the corresponding class centroid increases. (3) Besides the improved recognition accuracy, the spatial-frequency patterns in emotion recognition are investigated by the acquired projection matrix.

6.
Front Public Health ; 12: 1340642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686032

RESUMO

Background: The COVID-19 pandemic has significantly impacted the mental health of college students, prompting the need for universities to implement measures to mitigate these adverse effects. This study aims to assess the mental health status and mitigation measures of college students, identify the primary factors contributing to their mental health challenges, and provide suggestions for educational institutions to reduce negative psychological impacts. Methods: In February 2023, a questionnaire survey was conducted among 1,445 college students. Statistical analysis was performed on the survey results, and multiple regression models were used to identify significant influencing factors and optimize the model. Results: The study revealed correlations between factors affecting mental health during the pandemic, with interactions observed among some factors. Significant differences in mental health status were found among different groups of college students based on their information-sharing habits through apps and engagement in thesis research. Multiple regression analysis indicated that conducting academic research related to COVID-19 significantly increased the psychological stress of college students during the pandemic (p = 0.043). Among all mitigation measures, playing games demonstrated significant effectiveness in model analysis (p = 0.047). The optimization of the model showed that the multiple regression model considering the interaction of factors was more effective. Conclusion: Our research identifies crucial factors influencing the mental health of college students and investigates the mental health status of various student groups. We recommend that educational institutions adopt proactive strategies and a multifaceted approach to support the mental health of college students and address potential issues that may arise.


Assuntos
COVID-19 , Saúde Mental , Estudantes , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Estudos Transversais , Universidades , Feminino , Masculino , Saúde Mental/estatística & dados numéricos , China/epidemiologia , Inquéritos e Questionários , Adulto Jovem , Estresse Psicológico/psicologia , Adulto , Adolescente , SARS-CoV-2 , Pandemias
7.
Biomimetics (Basel) ; 9(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667219

RESUMO

Bio-inspired thin-wall structures with excellent mechanical properties, high-energy absorption capabilities, and a desirable lightweight level have been extensively applied to the passive safety protection of transportation and aerospace. Collaboration matching and the selection of optional structures with different bionic principles considering the multiple attribute evaluation index and engineering preference information have become an urgent problem. This paper proposes a parameter reduction-based indifference threshold-based attribute ratio analysis method under an interval-valued neutrosophic soft set (IVNS-SOFT) to obtain the weight vector of an evaluation indicator system for the selection of bionic thin-wall structures, which can avoid the problem of an inadequate subjective evaluation and reduce redundant parameters. An IVNS-SOFT-based multi-attributive border approximation area comparison (MABAC) method is proposed to obtain an optimal alternative, which can quantify uncertainty explicitly and handle the uncertain and inconsistent information prevalent in the expert system. Subsequently, an application of five bio-inspired thin-wall structures is applied to demonstrate that this proposed method is valid and practical. Comparative analysis, sensitivity analysis, and discussion are conducted in this research. The results show that this study provides an effective tool for the selection of bionic thin-wall structures.

8.
PLoS One ; 19(4): e0299495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635535

RESUMO

This study evaluated the effect of 24-week Taichi training and Taichi plus resistance band training on pulmonary diffusion capacity and glycemic control in patients with Type 2 diabetes mellitus (T2DM). Forty-eight patients with T2DM were randomly divided into three groups: Group A-Taichi training: practiced Taichi 60 min/day, 6 days/week for 24 weeks; Group B-Taichi plus resistance band training: practiced 60-min Taichi 4 days/week plus 60-min resistance band training 2 days/week for 24 weeks; and Group C-controls: maintaining their daily lifestyles. Stepwise multiple regression analysis was applied to predict diffusion capacity of the lungs for carbon monoxide (DLCO) by fasting blood glucose, insulin, glycosylated hemoglobin (HbA1c), tumour necrosis factor alpha (TNF-α), von Willebrand Factor (vWF), interleukin-6 (IL-6), intercellular adhesion molecule 1 (ICAM-1), endothelial nitric oxide synthase (eNOS), nitric oxide (NO), endothelin-1 (ET-1), vascular endothelial growth factor, and prostaglandin I-2. Taichi with or without resistance band training significantly improved DLCO, increased insulin sensitivity, eNOS and NO, and reduced fasting blood glucose, insulin, HbA1c, TNF-α, vWF, IL-6, ICAM-1, and ET-1. There was no change in any of these variables in the control group. DLCO was significantly predicted (R2 = 0.82) by insulin sensitivity (standard-ß = 0.415, P<0.001), eNOS (standard-ß = 0.128, P = 0.017), TNF-α (standard-ß = -0.259, P = 0.001), vWF (standard-ß = -0.201, P = 0.007), and IL-6 (standard-ß = -0.175, P = 0.032) in patients with T2DM. The impact of insulin sensitivity was the most important predictor for the variation of DLCO based on the multiple regression modeling. This study demonstrates that 24-week Taichi training and Taichi plus resistance band training effectively improve pulmonary diffusion capacity and blood glycemic control in patients with T2DM. Variation of DLCO is explained by improved insulin sensitivity and endothelial function, and reduced inflammatory markers, including TNF-α, vWF, and IL-6.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Molécula 1 de Adesão Intercelular , Glicemia/metabolismo , Hemoglobinas Glicadas , Interleucina-6 , Fator de Necrose Tumoral alfa , Controle Glicêmico , Fator de von Willebrand , Fator A de Crescimento do Endotélio Vascular , Insulina , Pulmão/metabolismo
9.
Am J Chin Med ; : 1-42, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654507

RESUMO

The pathogenesis of Alzheimer's disease (AD), a degenerative disease of the central nervous system, remains unclear. The main manifestations of AD include cognitive and behavioral disorders, neuropsychiatric symptoms, neuroinflammation, amyloid plaques, and neurofibrillary tangles. However, current drugs for AD once the dementia stage has been reached only treat symptoms and do not delay progression, and the research and development of targeted drugs for AD have reached a bottleneck. Thus, other treatment options are needed. Bioactive ingredients derived from plants are promising therapeutic agents. Specifically, Ginkgo biloba (Gb) extracts exert anti-oxidant, anticancer, neuroplastic, neurotransmitter-modulating, blood fluidity, and anti-inflammatory effects, offering alternative options in the treatment of cardiovascular, metabolic, and neurodegenerative diseases. The main chemical components of Gb include flavonoids, terpene lactones, proanthocyanidins, organic acids, polysaccharides, and amino acids. Gb and its extracts have shown remarkable therapeutic effects on various neurodegenerative diseases, including AD, with few adverse reactions. Thus, high-quality Gb extracts are a well-established treatment option for AD. In this review, we summarize the insights derived from traditional Chinese medicine, experimental models, and emerging clinical trials on the role of Gb and its chemical components in the treatment of the main clinical manifestations of AD.

10.
Front Physiol ; 15: 1386413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645688

RESUMO

Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38662416

RESUMO

Electron-beam-evaporated nickel oxide (NiOx) films are known for their high quality, precise control, and suitability for complex structures in perovskite (PVK) solar cells (PSCs). However, untreated NiOx films have inherent challenges, such as surface defects, relatively low intrinsic conductivity, and shallow valence band maximum, which seriously restrict the efficiency and stability of the devices. To address these challenges, we employ a dual coordination optimization strategy. The strategy includes low heating rate annealing of NiOx films and using an aminoguanidine nitrate spin coating process on the surfaces of NiOx films to strategically modify NiOx films itself and the interface of NiOx/PVK. Under the synergistic effect of this dual optimization method, the quality of the films is significantly improved and its p-type characteristics are enhanced. At the same time, the interface defects and energy level alignment of the films are effectively improved, and the charge extraction ability at the interface is improved. The combined treatment significantly improved the efficiency of inverted PSCs, from 17.85% to 20.31%, and enhanced device stability under various conditions. This innovative dual-coordinated optimization strategy provides a clear and effective framework for improving the performance of NiOx films and inverted PSCs.

12.
ACS Appl Mater Interfaces ; 16(15): 19039-19047, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573751

RESUMO

Wide-bandgap semitransparent perovskite photovoltaics are emerging as one of the ideal candidates for building-integrated photovoltaics (BIPV). However, surface defects in inorganic CsPbBr3 perovskite prepared by vapor deposition severely limit the optoelectronic performance of perovskite solar cells. To address this issue, a strategy of doping a trace amount of KBr into perovskite by vapor deposition is adopted, effectively improving the quality of the film, reducing surface defect concentration, and enhancing the transportation and extraction of charge carriers. Simultaneously, fully physical vapor deposition technology is employed to fabricate perovskite solar cells with an average visible light transmittance of 44%. These devices exhibited an ultrahigh open-circuit voltage of 1.55 V and a superior power conversion efficiency (PCE) of 7.28%, demonstrating excellent moisture and heat resistance. Moreover, the corresponding 5 cm × 5 cm modules achieve a PCE of 5.35% with great thermal insulation capability. This work provides an approach for fabricating highly efficient all-inorganic perovskite solar cells with high average visible light transmittance, demonstrating new insights into their application in building-integrated photovoltaics.

13.
Traffic Inj Prev ; 25(4): 640-648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578292

RESUMO

OBJECTIVE: Occupant impact safety is critical for train development. This paper proposes a systematic procedure for developing validated numerical occupant crash scenarios for high-speed trains by integrating experimental, computational, and inverse methods. METHODS: As the train interior is the most potentially injury-causing factor, the material properties were acquired by mechanical tests, and constitutive models were calibrated using inverse methods. The validity of the seat material constitutive model was further verified via drop tower tests. Finite element (FE) and multibody (MB) models of train occupant-seat interactions in frontal impact were established in LS-DYNA and MADYMO software, respectively, using the experimentally acquired materials/mechanical characteristics. Three dummy sled crash tests with different folding table and backrest configurations were conducted to validate the numerical occupant-seat models and to further assess occupant injury in train collisions. The occupant impact responses between dummy tests and simulations were quantitatively compared using a correlation and analysis (CORA) objective rating method. RESULTS: Results indicated that the experimentally calibrated numerical seat-occupant models could effectively reproduce the occupant responses in bullet train collisions (CORA scores >80%). Compared with the train seat-occupant MB model, the FE model could simulate the head acceleration with slightly more acceptable fidelity, however, the FE model CORA scores were slightly less than for the MB models. The maximum head acceleration was 30 g but the maximum HIC score was 17.4. When opening the folding table, the occupant's chest injury was not obvious, but the neck-table contact and "chokehold" may potentially be severe and require further assessment. CONCLUSIONS: This study demonstrates the value of experimental data for occupant-seat model interactions in train collisions and provides practical help for train interior safety design and formulation of standards for rolling stock interior passive safety.


Assuntos
Acidentes de Trânsito , Traumatismos Torácicos , Humanos , Pescoço , Aceleração , Postura Sentada , Fenômenos Biomecânicos
14.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673219

RESUMO

The titanium alloy components utilized in the aviation field are typically large in size and possess complex structures. By utilizing multiple additive manufacturing processes, the precision and efficiency requirements of production can be met. We investigated the hybrid additive manufacturing of Ti-6Al-4V using a combination of cold metal transfer additive manufacturing (CMTAM) and laser metal deposition (LMD), as well as the feasibility of using the CMT-LMD hybrid additive manufacturing process for fabricating Ti-6Al-4V components. Microstructural examinations, tensile testing coupled with digital image correlation and dynamic compressive experiments (by the split Hopkinson pressure bar (SHPB) system) were employed to assess the parts. The results indicate that the interface of the LMD and CMTAM zone formed a compact metallurgical bonding. In the CMTAM and LMD zone, the prior-ß grains exhibit epitaxial growth, forming columnar prior-ß grains. Due to laser remelting, the CMT-LMD hybrid additive zone experiences grain refinement, resulting in equiaxed prior-ß grains at the interface with an average grain size smaller than that of the CMTAM and LMD regions. The microstructures reveal significant differences in grain orientation and morphology among the zones, with distinct textures forming in each zone. In the CMT-LMD hybrid zone, due to interfacial strengthening, strain concentration occurs in the arc additive zone during tensile testing, leading to fracture on the CMTAM zone. Under high-strain-rate dynamic impact conditions, the LMD region exhibits ductile fracture, while the CMTAM zone demonstrates brittle fracture. The hybrid zone combines ductile and brittle fracture modes, and the CMT-LMD hybrid material exhibits superior dynamic impact performance compared to the single deposition zone.

15.
J Therm Biol ; 121: 103828, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38604115

RESUMO

Heating, Ventilation, and Air Conditioning (HVAC) systems in high-speed trains (HST) are responsible for consuming approximately 70% of non-operational energy sources, yet they frequently fail to ensure provide adequate thermal comfort for the majority of passengers. Recent advancements in portable wearable sensors have opened up new possibilities for real-time detection of occupant thermal comfort status and timely feedback to the HVAC system. However, since occupant thermal comfort is subjective and cannot be directly measured, it is generally inferred from thermal environment parameters or physiological signals of occupants within the HST compartment. This paper presents a field test conducted to assess the thermal comfort of occupants within HST compartments. Leveraging physiological signals, including skin temperature, galvanic skin reaction, heart rate, and ambient temperature, we propose a Predicted Thermal Comfort (PTC) model for HST cabin occupants and establish an intelligent regulation model for the HVAC system. Nine input factors, comprising physiological signals, individual physiological characteristics, compartment seating, and ambient temperature, were formulated for the PTS model. In order to obtain an efficient and accurate PTC prediction model for HST cabin occupants, we compared the accuracy of different subsets of features trained by Machine Learning (ML) models of Random Forest, Decision Tree, Vector Machine and K-neighbourhood. We divided all the predicted feature values into four subsets, and did hyperparameter optimisation for each ML model. The HST compartment occupant PTC prediction model trained by Random Forest model obtained 90.4% Accuracy (F1 macro = 0.889). Subsequent sensitivity analyses of the best predictive models were then performed using SHapley Additive explanation (SHAP) and data-based sensitivity analysis (DSA) methods. The development of a more accurate and operationally efficient thermal comfort prediction model for HST occupants allows for precise and detailed feedback to the HVAC system. Consequently, the HVAC system can make the most appropriate and effective air supply adjustments, leading to improved satisfaction rates for HST occupant thermal comfort and the avoidance of energy wastage caused by inaccurate and untimely predictive feedback.

16.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607333

RESUMO

Unraveling the mechanism of chirality transfer across length scales is crucial to the rational development of functional materials with hierarchical chirality. The key obstacle is the lack of structural information, especially at the mesoscopic level. We report herein the structural identification of helical covalent organic frameworks (heliCOFs) with hierarchical chirality, which integrate molecular chirality, channel chirality, and morphology chirality into one crystalline entity. Specifically, benefiting from the highly ordered structure of heliCOFs, the existence of chiral channels at the mesoscopic level has been confirmed by electron crystallography, and the handedness of these chiral channels has been directly determined through the stereopair imaging technique. Accordingly, the chirality transfer in heliCOFs from microscopic to macroscopic levels could be rationalized with a layer-rotating model that has been supported by both crystal structure analysis and theoretical calculations. Observation of chiral channels in heliCOFs not only provides unprecedented data for the understanding of the chirality transfer process but also sheds new light on the rational construction of highly ordered polymeric materials with hierarchical chirality.

17.
Phys Eng Sci Med ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504066

RESUMO

Remote photoplethysmography (rPPG) technology is a non-contact physiological signal measurement method, characterized by non-invasiveness and ease of use. It has broad application potential in medical health, human factors engineering, and other fields. However, current rPPG technology is highly susceptible to variations in lighting conditions, head pose changes, and partial occlusions, posing significant challenges for its widespread application. In order to improve the accuracy of remote heart rate estimation and enhance model generalization, we propose PulseFormer, a dual-path network based on transformer. By integrating local and global information and utilizing fast and slow paths, PulseFormer effectively captures the temporal variations of key regions and spatial variations of the global area, facilitating the extraction of rPPG feature information while mitigating the impact of background noise variations. Heart rate estimation results on the popular rPPG dataset show that PulseFormer achieves state-of-the-art performance on public datasets. Additionally, we establish a dataset containing facial expressions and synchronized physiological signals in driving scenarios and test the pre-trained model from the public dataset on this collected dataset. The results indicate that PulseFormer exhibits strong generalization capabilities across different data distributions in cross-scenario settings. Therefore, this model is applicable for heart rate estimation of individuals in various scenarios.

18.
J Biochem Mol Toxicol ; 38(4): e23675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488158

RESUMO

Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.


Assuntos
MicroRNAs , Músculo Liso Vascular , Becaplermina/farmacologia , Proliferação de Células , Miócitos de Músculo Liso , Fenótipo , MicroRNAs/genética , Movimento Celular , Células Cultivadas
19.
Ann Ital Chir ; 95(1): 42-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469613

RESUMO

BACKGROUND: Intrahepatic bile duct stones, a prevalent condition within hepato-biliary diseases, present a considerable challenge due to the high rates of recurrence, complications, and difficulty in treatment. Selecting an optimal surgical approach is vital for effective stone clearance and minimizing patient morbidity. While laparoscopic hepatectomy and percutaneous transhepatic choledochoscopy are established modalities, their comparative efficacy and safety profiles necessitate further investigation to inform clinical decision-making. OBJECTIVE: To explore the effectiveness and safety of different surgical methods for intrahepatic bile duct stones.  Methods: The clinical data of 65 patients with intrahepatic bile duct stones admitted to Nanchong Central Hospital, China, from January 2021 to January 2022 were retrospectively analyzed. According to the differences in surgical methods, patients undergoing laparoscopic hepatectomy were included in the laparoscopic group (n = 33), and patients undergoing percutaneous transhepatic choledochoscopy were included in the percutaneous transhepatic group (n = 32). The differences in perioperative indicators, inflammatory factors, postoperative complications, and one-year follow-up recurrence rates between the two groups were compared. RESULTS: Compared with percutaneous transhepatic group, laparoscopic group had significantly shorter operation time and hospitalization time (p < 0.05), and significantly higher blood loss (p < 0.05). After the operation, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the laparoscopic and percutaneous transhepatic groups were significantly lower than those in the same group before the operation (p < 0.05). CRP, TNF-α, and IL-6 in the laparoscopic group were significantly lower than in the percutaneous transhepatic group (p < 0.05). There was no significant difference in the incidence of postoperative complications and the recurrence rate of one-year follow-up between the laparoscopic group and the percutaneous transhepatic puncture group (p > 0.05). CONCLUSION: Laparoscopic hepatectomy and percutaneous transhepatic choledochoscopy are both practical and safe, and the appropriate surgical scheme should be selected according to the patient's specific condition.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Humanos , Estudos Retrospectivos , Ductos Biliares Intra-Hepáticos/cirurgia , Complicações Pós-Operatórias/epidemiologia , Resultado do Tratamento
20.
Nat Commun ; 15(1): 2222, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472257

RESUMO

Iso-butene (iso-C4H8) is an important raw material in chemical industry, whereas its efficient separation remains challenging due to similar molecular properties of C4 olefins. The ideal adsorbent should possess simultaneous high uptakes for 1,3-butadiene (C4H6) and n-butene (n-C4H8) counterparts, endowing high efficiency for iso-C4H8 separation in adsorption columns. Herein, a sulfate-pillared adsorbent, SOFOUR-DPDS-Ni (DPDS = 4,4'-dipyridyldisulfide), is reported for the efficient iso-C4H8 separation from binary and ternary C4 olefin mixtures. The rigidity in pore sizes and shapes of SOFOUR-DPDS-Ni exerts the molecular sieving of iso-C4H8, while exhibiting high C4H6 and n-C4H8 uptakes. The benchmark Henry's selectivity for C4H6/iso-C4H8 (2321.8) and n-C4H8/iso-C4H8 (233.5) outperforms most reported adsorbents. Computational simulations reveal the strong interactions for C4H6 and n-C4H8. Furthermore, dynamic breakthrough experiments demonstrate the direct production of high-purity iso-C4H8 (>99.9%) from C4H6/iso-C4H8 (50/50, v/v), n-C4H8/iso-C4H8 (50/50, v/v), and C4H6/n-C4H8/iso-C4H8 (50/15/35, v/v/v) gas-mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...