Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1269164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029205

RESUMO

Introduction: Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered to be the most pathogenic aquareovirus. Productive viral infection requires extensive interactions between viruses and host cells. However, the molecular mechanisms underlying GCRV early infection remains elusive. Methods: In this study we performed transcriptome and DNA methylome analyses with Ctenopharyngodon idellus kidney (CIK) cells infected with GCRV at 0, 4, and 8 h post infection (hpi), respectively. Results: We found that at early infection stage the differentially expressed genes related to defense response and immune response in CIK cells are activated. Although DNA methylation pattern of CIK cells 8 hpi is similar to mock-infected cells, we identified a considerable number of genes that selectively utilize alternative polyadenylation sites. Particularly, we found that biological processes of cytoskeleton organization and regulation of microtubule polymerization are statistically enriched in the genes with altered 3'UTRs. Discussion: Our results suggest that alternative polyadenylation potentially contributes to GCRV early infection.

2.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978295

RESUMO

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Assuntos
Caenorhabditis elegans , Fatores de Diferenciação de Crescimento , Adulto , Camundongos , Humanos , Animais , Caenorhabditis elegans/metabolismo , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Envelhecimento/genética , Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas Morfogenéticas Ósseas
4.
Front Genet ; 14: 1185790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496714

RESUMO

Background: Phenotype similarity calculation should be used to help improve drug repurposing. In this study, based on the MeSH terms describing the phenotypes deposited in OMIM, we proposed a method, namely, PheSom (Phenotype Similarity On MeSH), to measure the similarity between phenotypes. PheSom counted the number of overlapping MeSH terms between two phenotypes and then took the weight of every MeSH term within each phenotype into account according to the term frequency-inverse document frequency (FIDC). Phenotype-related genes were used for the evaluation of our method. Results: A 7,739 × 7,739 similarity score matrix was finally obtained and the number of phenotype pairs was dramatically decreased with the increase of similarity score. Besides, the overlapping rates of phenotype-related genes were remarkably increased with the increase of similarity score between phenotypes, which supports the reliability of our method. Conclusion: We anticipate our method can be applied to identifying novel therapeutic methods for complex diseases.

5.
Front Cell Dev Biol ; 11: 1146849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169021

RESUMO

Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive. Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor. Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression. Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia.

6.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430462

RESUMO

Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) can profile genome-wide epigenetic marks associated with regulatory genomic elements. However, conventional ChIP-seq is challenging when examining limited numbers of cells. Here, we developed a new technique by supplementing carrier materials of both chemically modified mimics with epigenetic marks and dUTP-containing DNA fragments during conventional ChIP procedures (hereafter referred to as 2cChIP-seq), thus dramatically improving immunoprecipitation efficiency and reducing DNA loss of low-input ChIP-seq samples. Using this strategy, we generated high-quality epigenomic profiles of histone modifications or DNA methylation in 10-1000 cells. By introducing Tn5 transposase-assisted fragmentation, 2cChIP-seq reliably captured genomic regions with histone modification at the single-cell level in about 100 cells. Moreover, we characterized the methylome of 100 differentiated female germline stem cells (FGSCs) and observed a particular DNA methylation signature potentially involved in the differentiation of mouse germline stem cells. Hence, we provided a reliable and robust epigenomic profiling approach for small cell numbers and single cells.


Assuntos
DNA , Epigenômica , Camundongos , Animais , Epigenômica/métodos , Análise de Sequência de DNA/métodos , DNA/química , Metilação de DNA , Contagem de Células
7.
Polymers (Basel) ; 14(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015648

RESUMO

Keloid is a poorly understood fibrotic skin disease that commonly occurs during wound-healing. As a polymer composed of nucleic acid and proteins, the structure of chromatin could be dynamically regulated in the nucleus. In this study, we explored the dynamics of chromatin accessibility and the transcriptome in dermal fibroblasts (DFs) in keloid formation. Compared to normal samples, chromatin accessibility and transcriptome were extensively altered in keloid DFs. In addition, changes in chromatin accessibility were closely associated with changes in gene expression in DFs. Breast cancer type 1 (BRCA1) was significantly downregulated in keloid DFs, and its knockdown promoted the proliferation and attenuated the migration ability of normal DF cells. Mechanistically, BRCA1 suppression significantly reduced the expression of neuronal pentraxin 2 (NPTX2), a cell viability-related gene. BRCA1 binding affinity at the NPTX2 enhancer and the chromatin accessibility in the same region were significantly lower in keloid DFs than in normal DFs, which might contribute to NPTX2 inhibition. In conclusion, this study identified BRCA1 inhibition in DFs as a novel pathological factor in keloids and preliminarily explored its potential mechanisms, which will help us understand the formation of keloids.

8.
J Mater Chem B ; 10(22): 4254-4260, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583194

RESUMO

Butyrylcholinesterase (BChE) is an essential human biomarker which is related to liver and neurodegenerative diseases. It is of great significance to develop a fluorescent probe that can image BChE in vitro and in vivo. Unfortunately, most fluorescent probes that are based on a single change in fluorescence intensity are susceptible to environmental interference. Therefore, we reported an easily available ratiometric fluorescent probe, TB-BChE, with aggregation-induced emission (AIE) characteristics for ratiometric imaging of BChE. TB-BChE demonstrated excellent sensitivity (LOD = 39.24 ng mL-1) and specificity for BChE. Moreover, we have successfully studied the ratiometric imaging of TB-BChE to BChE in a nonalcoholic fatty liver disease model. These results indicated that TB-BChE is expected to become a powerful analysis tool for butyrylcholinesterase research in basic medicine and clinical applications.


Assuntos
Butirilcolinesterase , Hepatopatia Gordurosa não Alcoólica , Animais , Diagnóstico por Imagem , Corantes Fluorescentes , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem
9.
Front Biosci (Landmark Ed) ; 27(3): 103, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35345335

RESUMO

BACKGROUND: Metastatic melanoma (MM) represents a common malignancy with poor prognosis. Immune checkpoint inhibition (ICI), including PD-1 blockade, has been emerging as the popular therapeutic in MM for its durable treatment effect, but its response rate is still limiting. METHODS: We comprehensively analyzed the associations between KMT2C somatic mutation and the tumor microenvironment as well as the ICI response of MM patients based on three published cohorts. Gene differential expression analysis between tumor samples with mutated and wild-type KMT2C was performed by DESeq2 package. Functional enrichment analysis was conducted by using clusterProfiler package. Kaplan-Meier was used to perform overall survival probability estimate through survival package and rms package was applied for the construction of nomogram model. RESULTS: We report here that KMT2C is a potential biomarker for anti-PD-1 treatment in MM. This biomarker can be used for comprehensively analyzing its association with patients' prognosis, tumor microenvironment and genomic features. Mutations of KMT2C profoundly altered expression of immune- and DNA replication-related genes in MM tumors. MM patients harboring KMT2C mutations showed significantly better overall survival (OS) after treatment with PD-1 monoclonal antibody as compared to wild-type KMT2C. Although KMT2C mutation has no significant influence on immune cell infiltration into MM tumors, the tumor mutation load and neoantigen load are indeed elevated in KMT2C mutated MM samples. This might represent a possible pathway through which KMT2C regulates the response of MM patients to anti-PD-1 treatment. Finally, we constructed a nomogram model by combing the independent prognostic factors, including KMT2C mutation, which could effectively predict the 1-year survival probability of MM patients after anti-PD-1 treatment. CONCLUSIONS: In conclusion, we report the role of KMT2C in anti-PD-1 treatment response regulation in MM for the first time. This may consequently be helpful for KMT2C personalized application.


Assuntos
Proteínas de Ligação a DNA , Melanoma , Receptor de Morte Celular Programada 1 , Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Humanos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/genética
10.
Liver Int ; 41(10): 2485-2498, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34033190

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. The molecular mechanism underlying HCC is still unclear. In this study, we conducted a comprehensive analysis to explore the genes, pathways and their interactions involved in HCC. METHODS: We analysed the gene expression datasets corresponding to 488 samples from 10 studies on HCC and identified the genes differentially expressed in HCC samples. Then, the genes were compared against Phenolyzer and GeneCards to screen those potentially associated with HCC. The features of the selected genes were explored by mapping them onto the human protein-protein interaction network, and a subnetwork related to HCC was constructed. Hub genes in this HCC specific subnetwork were identified, and their relevance with HCC was investigated by survival analysis. RESULTS: We identified 444 differentially expressed genes (177 upregulated and 267 downregulated) related to HCC. Functional enrichment analysis revealed that pathways like p53 signalling and chemical carcinogenesis were eriched in HCC genes. In the subnetwork related to HCC, five disease modules were detected. Further analysis identified six hub genes from the HCC specific subnetwork. Survival analysis showed that the expression levels of these genes were negatively correlated with survival rate of HCC patients. CONCLUSIONS: Based on a systems biology framework, we identified the genes, pathways, as well as the disease specific network related to HCC. We also found novel biomarkers whose expression patterns were correlated with progression of HCC, and they could be candidates for further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/genética , Prognóstico
11.
Front Chem ; 9: 801972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096768

RESUMO

Here, we developed a rapid, visual and double-checked Logic Gate detection platform for detection of pathogenic microorganisms by aggregation-induced emission luminogens (AIEgens) in combination with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas). DNA light-up AIEgens (1,1,2,2-tetrakis[4-(2-bromo-ethoxy) phenyl]ethene, TTAPE) was non-emissive but the emission was turned on in the presence of large amount of DNA produced by recombinase polymerase amplification (RPA). When CRISPR/Cas12a was added, all long-stranded DNA were cut leading to the emission quenched. Thus, a method that can directly observe the emission changes with the naked eye has been successfully constructed. The detection is speedy within only 20 min, and has strong specificity to the target. The result can be judged by Logic Gate. Only when the output signal is (1,0), does it represent the presence of pathogenic microorganisms in the test object. Finally, the method was applied to the detect pathogenic microorganisms in environmental water samples, which proved that this method has high selectivity, specificity and applicability for the detection of pathogenic microorganisms in environmental water samples.

12.
Front Genet ; 12: 799099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992637

RESUMO

Lung cancer is one of the leading causes of cancer-associated death in the world. It is of great importance to explore new therapeutic targets. Traditional Chinese medicine formula Feiyanning has been clinically administered in China for more than a decade and raised attention due to its anticancer effect in lung cancer. However, the underlying molecular mechanisms remain to be elucidated. In the present study, we carried out cellular and molecular assays to examine the antitumor activities and understand the mechanism of the Feiyanning formula in lung cancer cells. The cellular viability of Feiyanning-treated lung cancer cells was evaluated by Cell Counting Kit-8. The effect of the Feiyanning formula on cellular migration and invasion of lung cancer cells was examined by wound healing and transwell assays. Transcriptome and chromatin accessibility analysis by RNA-seq and ATAC-seq was performed to investigate the underlying molecular mechanisms. Our results revealed that the Feiyanning formula inhibited the cellular activities of proliferation, migration, and invasion in non-small cell lung cancer cell lines A549, H1975, and 95D. Furthermore, we observed that the transcriptional activity of the migration-associated genes was downregulated upon Feiyanning formula treatment in non-small cell lung cancer cells. The chromatin accessibility of the Feiyanning-treated lung cancer genome tended to decrease, and the regulation of the cellular component movement biological process and PI3K-AKT pathway were enriched among these altered genomic regions. Taken together, the present study suggested that Feiyanning formula exerted the antitumor effects by modulating the expression and chromatin accessibility levels of migration-associated genes.

13.
Bioinformatics ; 36(17): 4626-4632, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516365

RESUMO

MOTIVATION: Alzheimer's disease (AD) is a serious degenerative brain disease and the most common cause of dementia. The current available drugs for AD provide symptomatic benefit, but there is no effective drug to cure the disease. The emergence of large-scale genomic, pharmacological data provides new opportunities for drug discovery and drug repositioning as a promising strategy in searching novel drug for AD. RESULTS: In this study, we took advantage of our increasing understanding based on systems biology approaches on the pathway and network levels and perturbation datasets from the Library of Integrated Network-Based Cellular Signatures to introduce a systematic computational process to discover new drugs implicated in AD. First, we collected 561 genes that have reported to be risk genes of AD, and applied functional enrichment analysis on these genes. Then, by quantifying proximity between 5595 molecule drugs and AD based on human interactome, we filtered out 1092 drugs that were proximal to the disease. We further performed an Inverted Gene Set Enrichment analysis on these drug candidates, which allowed us to estimate effect of perturbations on gene expression and identify 24 potential drug candidates for AD treatment. Results from this study also provided insights for understanding the molecular mechanisms underlying AD. As a useful systematic method, our approach can also be used to identify efficacious therapies for other complex diseases. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/zer0o0/drug-repo.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Doença de Alzheimer , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Reposicionamento de Medicamentos , Perfilação da Expressão Gênica , Humanos , Software , Transcriptoma
14.
Biosci Rep ; 40(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32412047

RESUMO

Breast cancer is a common malignant tumor among women whose prognosis is largely determined by the period and accuracy of diagnosis. We here propose to identify a robust DNA methylation-based breast cancer-specific diagnostic signature. Genome-wide DNA methylation and gene expression profiles of breast cancer patients along with their adjacent normal tissues from the Cancer Genome Atlas (TCGA) were obtained as the training set. CpGs that with significantly elevated methylation level in breast cancer than not only their adjacent normal tissues and the other ten common cancers from TCGA but also the healthy breast tissues from the Gene Expression Omnibus (GEO) were finally remained for logistic regression analysis. Another independent breast cancer DNA methylation dataset from GEO was used as the testing set. Lots of CpGs were hyper-methylated in breast cancer samples compared with adjacent normal tissues, which tend to be negatively correlated with gene expressions. Eight CpGs located at RIIAD1, ENPP2, ESPN, and ETS1, were finally retained. The diagnostic model was reliable in separating BRCA from normal samples. Besides, chromatin accessibility status of RIIAD1, ENPP2, ESPN and ETS1 showed great differences between MCF-7 and MDA-MB-231 cell lines. In conclusion, the present study should be helpful for breast cancer early and accurate diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Ilhas de CpG , Metilação de DNA , Perfilação da Expressão Gênica , Transcriptoma , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Estudos de Casos e Controles , Biologia Computacional , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Células MCF-7 , Proteínas dos Microfilamentos/genética , Fenótipo , Diester Fosfórico Hidrolases/genética , Valor Preditivo dos Testes , Prognóstico , Proteína Proto-Oncogênica c-ets-1/genética
15.
Front Psychiatry ; 11: 151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256400

RESUMO

Major depressive disorder (MDD) is a serious mental disease with negative effects on both mental and physical health of the patient. Currently, antidepressants are among the major ways to ease or treat MDD. However, the existing antidepressants have limited efficacy in treating MDD, with a large fraction of patients either responding inadequately or differently to antidepressants during the treatment. Pharmacogenetics studies have found that the genetic features of some genes are associated with the antidepressant efficacy. In order to obtain a better understanding on the relationship between the genetic factors and antidepressant treatment response, we compiled a list of 233 single-nucleotide polymorphisms (SNPs) significantly associated with the antidepressant efficacy in treating MDD. Of the 13 non-synonymous SNPs in the list, three (rs1065852, rs3810651, and rs117986340) may influence the structures and function of the corresponding proteins. Besides, the influence of rs1065852 on the structure of CYP2D6 was further investigated via molecular dynamics simulations. Our results showed that compared to the native CYP2D6 the flexibility of the F-G loop was reduced in the mutant. As a portion of the substrate access channel, the lower flexibility of F-G loop may reduce the ability of the substrates to enter the channel, which may be the reason for the lower enzyme activity of mutant. This study may help us to understand the impact of genetic variation on antidepressant efficacy and provide clues for developing new antidepressants.

16.
J Biomol Struct Dyn ; 37(11): 2938-2948, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30044167

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3 D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the ß2-ß3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the "transition zone" may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4ß2* nAChRs. Communicated by Ramaswamy H. Sarma.


Assuntos
Membrana Celular/metabolismo , Nicotina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas , Receptor Nicotínico de Acetilcolina alfa7/química
17.
J Integr Plant Biol ; 50(1): 29-39, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18666949

RESUMO

Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCl, Na(2)SO(4), NaHCO(3) and Na(2)CO(3)) and 30 salt-alkaline combinations (salinity 24-120 mmol/L and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (P

Assuntos
Medicago sativa/efeitos dos fármacos , Sais/farmacologia , Plântula/efeitos dos fármacos , Biomassa , Carbonatos/farmacologia , Concentração de Íons de Hidrogênio , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Bicarbonato de Sódio/farmacologia , Cloreto de Sódio/farmacologia , Sulfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...