Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 53(5): 550-560, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36629248

RESUMO

BACKGROUND: Peanut allergy accounts for the majority of food-induced hypersensitivity reactions and can lead to lethal anaphylaxis. Animal models can provide an insight into the immune mechanisms responsible for sensitization and allergic anaphylaxis. However, different mouse strains and sensitization protocols can influence the successful development of a peanut allergic mouse model. OBJECTIVE: We aimed at developing a systemic anaphylaxis model of peanut allergy that resembles human anaphylaxis. We compared the immunological and clinical responses in genetically different mouse strains. METHODS: Female BALB/c, C57BL/6, and C3H mice were intraperitoneally sensitized and later challenged with peanut proteins. Allergen-specific serology was done by ELISA, and anaphylaxis was evaluated by monitoring changes in body temperature upon systemic challenge. RESULTS: Sensitization to peanut was successful in C3H mice and triggered production of allergen-specific antibodies, cytokines and anaphylaxis. Allergic reactions were characterized by the release of allergic mediators and by changes in leukocyte populations in blood and in the peritoneal cavity. Among the identified major peanut allergens, Ara h 2 showed the strongest anaphylactic potential. Much lower or no trigger of peanut-specific antibodies was observed in BALB/c and C57BL/6 mice, which experienced no hypersensitivity reactions. CONCLUSIONS: Mouse strain matters for testing of peanut protein allergens. We identified C3H mice as a suitable strain for the development of a mouse model of peanut-allergic anaphylaxis. Pre-clinical, humoural and cellular responses resembled the responses observed in human patients. The described model can be useful for further studies on peanut allergy and for the development of new therapeutic strategies.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Humanos , Feminino , Camundongos , Animais , Arachis , Camundongos Endogâmicos C3H , Imunoglobulina E , Camundongos Endogâmicos C57BL , Alérgenos
2.
Allergy ; 78(6): 1605-1614, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36704937

RESUMO

BACKGROUND: Peanut allergy is a type-I hypersensitivity immune reaction mediated by the binding of peanut allergens to IgE-FcεRI complexes on mast cells and basophils and by their subsequent cellular degranulation. Of all major peanut allergens, Ara h 2 is considered the most anaphylactic. With few options but allergen avoidance, effective treatment of allergic patients is needed. Passive immunotherapy (herein called PIT) based on prophylactic administration of peanut-specific monoclonal antibodies (mAbs) may present a promising treatment option for this under-served disease. METHOD: Fully human recombinant anti-peanut IgG mAbs were tested in mice sensitized to peanut allergen extract. Allergic mice received intravenous immunotherapy with anti-peanut Ara h 2-specific IgG1 or IgG4 mAbs cocktails, and were then challenged by a systemic injection of high-dose peanut allergen extract. The protection from allergic anaphylaxis was measured by monitoring the core body temperature. RESULTS: PIT with peanut-specific mAbs was associated with a significant and dose-dependent reduction of anaphylactic reactions in peanut-sensitized mice challenged with peanut allergen extract. Complete protection was observed at doses approximately 0.3-0.6 mg mAbs. Mixtures of mAbs were more effective than single mAbs, and effective treatment could be obtained with mAbs of both IgG1 and IgG4 subclasses. The therapeutic effect of anti-Ara h 2 mAbs was based on allergen neutralization and independent of the Fcγ receptor and mast-cell inhibition. CONCLUSION: This is the first report that shows that human-derived anti-peanut mAbs can prevent allergic anaphylaxis in mice. The study demonstrates that neutralizing allergenic epitopes on Ara h 2 by mAbs may represent a promising treatment option in peanut-allergy.


Assuntos
Anafilaxia , Hipersensibilidade Imediata , Hipersensibilidade a Amendoim , Humanos , Camundongos , Animais , Anafilaxia/prevenção & controle , Anticorpos Monoclonais , Antígenos de Plantas , Hipersensibilidade a Amendoim/prevenção & controle , Alérgenos , Proteínas Recombinantes , Imunoglobulina G , Arachis , Extratos Vegetais , Albuminas 2S de Plantas/química
3.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382536

RESUMO

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Assuntos
Anticorpos Biespecíficos , Humanos , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia
4.
Autophagy ; 15(6): 976-997, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30661429

RESUMO

Macroautophagy/autophagy is a cellular degradation pathway that delivers cytoplasmic material to lysosomes via double-membrane organelles called autophagosomes. Lipidation of ubiquitin-like LC3/GABARAP proteins on the autophagosome membrane is important for autophagy. The cysteine protease ATG4 executes 2 LC3/GABARAP processing events: priming of newly synthesized pro-LC3/GABARAP to enable subsequent lipidation, and delipidation/deconjugation of lipidated LC3/GABARAP (the exact purpose of which is unclear in mammals). Four ATG4 isoforms (ATG4A to ATG4D) exist in mammals; however, the functional redundancy of these proteins in cells is poorly understood. Here we show that human HAP1 and HeLa cells lacking ATG4B exhibit a severe but incomplete defect in LC3/GABARAP processing and autophagy. By further genetic depletion of ATG4 isoforms using CRISPR-Cas9 and siRNA we uncover that ATG4A, ATG4C and ATGD all contribute to residual priming activity, which is sufficient to enable lipidation of endogenous GABARAPL1 on autophagic structures. We also demonstrate that expressing high levels of pre-primed LC3B in ATG4-deficient cells can rescue a defect in autophagic degradation of the cargo receptor SQSTM1/p62, suggesting that delipidation by human ATG4 is not essential for autophagosome formation and fusion with lysosomes. Overall, our study provides a comprehensive characterization of ATG4 isoform function during autophagy in human cells. Abbreviations: Atg: autophagy-related; baf A1: bafilomycin A1; CASP3: caspase 3; CLEM: correlative light and electron microscopy; CMV: cytomegalovirus; CRISPR: clustered regularly interspaced short palindromic repeats; DKO: double knockout; EGFP: enhanced green fluorescent protein; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GFP: green fluorescent protein; HB: homogenization buffer; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3 interacting region; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFN2: mitofusin 2; N.A.: numerical aperture; NEM: N-ethylmaleimide; PDHA1: pyruvate dehydrogenase E1 alpha 1 subunit; PLD: phospholipase D; PE: phosphatidylethanolamine; RLUC: Renilla luciferase; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TKO: triple knockout; ULK1: unc-51 like autophagy activating kinase 1; VCL: vinculin; WT: wild-type.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Reguladoras de Apoptose/genética , Autofagossomos/ultraestrutura , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Caspase 3/metabolismo , Cisteína Endopeptidases/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Fusão de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Isoformas de Proteínas , Proteína Sequestossoma-1/metabolismo
5.
Front Cell Dev Biol ; 6: 148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443548

RESUMO

Autophagy protease ATG4B is a key regulator of the LC3/GABARAP conjugation system required for autophagosome formation, maturation and closure. Members of the ATG4 and the LC3/GABARAP family have been implicated in various diseases including cancer, and targeting the ATG4B protease has been suggested as a potential therapeutic anti-cancer strategy. Recently, it has been demonstrated that ATG4B is regulated by multiple post-translational modifications, including phosphorylation and de-phosphorylation. In order to identify regulators of ATG4B activity, we optimized a cell-based luciferase assay based on ATG4B-dependent release of Gaussia luciferase. We applied this assay in a proof-of-concept small molecule compound screen and identified activating compounds that increase cellular ATG4B activity. Next, we performed a high-throughput screen to identify kinases and phosphatases that regulate cellular ATG4B activity using siRNA mediated knockdown and cDNA overexpression. Of these, we provide preliminary evidence that the kinase AKT2 enhances ATG4B activity in cells. We provide all raw and processed data from the screens as a resource for further analysis. Overall, our findings provide novel insights into the regulation of ATG4B and highlight the importance of post-translational modifications of ATG4B.

6.
Biochemistry ; 55(3): 608-17, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26701387

RESUMO

Protein kinases are essential regulators of most cellular processes and are involved in the etiology and progression of multiple diseases. The cdc2-like kinases (CLKs) have been linked to various neurodegenerative disorders, metabolic regulation, and virus infection, and the kinases have been recognized as potential drug targets. Here, we have developed a screening workflow for the identification of potent CLK2 inhibitors and identified compounds with a novel chemical scaffold structure, the benzobisthiazoles, that has not been previously reported for kinase inhibitors. We propose models for binding of these compounds to CLK family proteins and key residues in CLK2 that are important for the compound interactions and the kinase activity. We identified structural elements within the benzobisthiazole that determine CLK2 and CLK3 inhibition, thus providing a rationale for selectivity assays. In summary, our results will inform structure-based design of CLK family inhibitors based on the novel benzobisthiazole scaffold.


Assuntos
Benzotiazóis/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Sequência de Aminoácidos , Benzotiazóis/síntese química , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Alinhamento de Sequência , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
7.
Autophagy ; 9(6): 942-4, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23528926

RESUMO

We have identified in plasma cells a novel ATG5-dependent selective negative control on the secretory pathway, which restricts antibody production, sustaining energy metabolism. Revealing new immune functions, autophagy is required in vivo for antibody responses and to maintain the memory plasma cell compartment.


Assuntos
Autofagia/imunologia , Plasmócitos/citologia , Plasmócitos/imunologia , Animais , Diferenciação Celular , Sobrevivência Celular , Citoproteção , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Modelos Biológicos , Resposta a Proteínas não Dobradas
8.
Nat Immunol ; 14(3): 298-305, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354484

RESUMO

The role of autophagy in plasma cells is unknown. Here we found notable autophagic activity in both differentiating and long-lived plasma cells and investigated its function through the use of mice with conditional deficiency in the essential autophagic molecule Atg5 in B cells. Atg5(-/-) differentiating plasma cells had a larger endoplasmic reticulum (ER) and more ER stress signaling than did their wild-type counterparts, which led to higher expression of the transcriptional repressor Blimp-1 and immunoglobulins and more antibody secretion. The enhanced immunoglobulin synthesis was associated with less intracellular ATP and more death of mutant plasma cells, which identified an unsuspected autophagy-dependent cytoprotective trade-off between immunoglobulin synthesis and viability. In vivo, mice with conditional deficiency in Atg5 in B cells had defective antibody responses, complete selection in the bone marrow for plasma cells that escaped Atg5 deletion and fewer antigen-specific long-lived bone marrow plasma cells than did wild-type mice, despite having normal germinal center responses. Thus, autophagy is specifically required for plasma cell homeostasis and long-lived humoral immunity.


Assuntos
Autofagia , Linfócitos B/metabolismo , Imunoglobulinas/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Plasmócitos/imunologia , Trifosfato de Adenosina , Animais , Formação de Anticorpos , Proteína 5 Relacionada à Autofagia , Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Centro Germinativo/imunologia , Homeostase , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Plasmócitos/citologia , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição/biossíntese
9.
Antioxid Redox Signal ; 16(10): 1088-99, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22369093

RESUMO

AIMS: Oxidative protein folding in the luminal compartment of endoplasmic reticulum (ER) is thought to be accompanied by the generation of H2O2, as side-product of disulfide bond formation. We aimed to examine the role of H2O2 produced in the lumen, which on one hand can lead to redox imbalance and hence can contribute to ER stress caused by overproduction of secretory proteins; on the other hand, as an excellent electron acceptor, H2O2 might serve as an additional pro-oxidant in physiological oxidative folding. RESULTS: Stimulation of H2O2 production in the hepatic ER resulted in a decrease in microsomal GSH and protein-thiol contents and in a redox shift of certain luminal oxidoreductases in mice. The oxidative effect, accompanied by moderate signs of ER stress and reversible dilation of ER cisternae, was prevented by concomitant reducing treatment. The imbalance also affected the redox state of pyridine nucleotides in the ER. Antibody producing cells artificially engineered with powerful luminal H2O2 eliminating system showed diminished secretion of mature antibody polymers, while incomplete antibody monomers/dimers were accumulated and/or secreted. INNOVATION: Evidence are provided by using in vivo models that hydrogen peroxide can promote disulfide bond formation in the ER. CONCLUSION: The results indicate that local H2O2 production promotes, while quenching of H2O2 impairs disulfide formation. The contribution of H2O2 to disulfide bond formation previously observed in vitro can be also shown in cellular and in vivo systems.


Assuntos
Retículo Endoplasmático/metabolismo , Peróxido de Hidrogênio/metabolismo , Dobramento de Proteína , Animais , Linhagem Celular , Dissulfetos/química , Cobaias , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Masculino , Camundongos , Oxirredução
10.
J Med Chem ; 53(20): 7452-60, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20883027

RESUMO

The ubiquitin-proteasome system plays a critical role in many diseases, making it an attractive biomarker and therapeutic target. However, the impact of results obtained in vitro using purified proteasome particles or whole cell extracts is limited by the lack of efficient methods to assess proteasome activity in living cells. We have engineered an internally quenched fluorogenic peptide with a proteasome-specific cleavage motif fused to TAT and linked to the fluorophores DABCYL and EDANS. This peptide penetrates cell membranes and is rapidly cleaved by the proteasomal chymotrypsin-like activity, generating a quantitative fluorescent reporter of in vivo proteasome activity as assessed by time-lapse or flow cytometry fluorescence analysis. This reporter is an innovative tool for monitoring proteasomal proteolytic activities in physiological and pathological conditions.


Assuntos
Corantes Fluorescentes/síntese química , Peptídeos/síntese química , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Corantes Fluorescentes/química , Hipocampo/citologia , Humanos , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Neurônios/enzimologia , Peptídeos/química , Subunidades Proteicas/metabolismo
11.
Mol Immunol ; 47(6): 1356-65, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20044139

RESUMO

Upon antigen stimulation, B lymphocytes differentiate into antibody secreting cells (ASC), most of which undergo apoptosis after a few days of intense Ig production. Differentiation entails expansion of the endoplasmic reticulum (ER) and requires XBP1 but not other elements of the unfolded protein response, like PERK. Moreover, normal and malignant ASC are exquisitely sensitive to proteasome inhibitors, but the underlying mechanisms are poorly understood. Here we analyze the role of C/EBP homologous protein (CHOP), a transcription factor mediating apoptosis in many cell types that experience high levels of ER stress. CHOP is transiently induced early upon B cell stimulation: covalent IgM aggregates form more readily and IgM secretion is slower in chop(-/-) cells. Despite these subtle changes, ASC differentiation and lifespan are normal in chop(-/-) mice. Unlike fibroblasts and other cell types, chop(-/-) ASC are equally or slightly more sensitive to proteasome inhibitors and ER stressors, implying tissue-specific roles for CHOP in differentiation and stress.


Assuntos
Apoptose , Plasmócitos/citologia , Plasmócitos/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas , Animais , Diferenciação Celular , Imunoglobulina M/metabolismo , Camundongos , Estresse Fisiológico , Fator de Transcrição CHOP/deficiência
12.
Blood ; 113(13): 3040-9, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19164601

RESUMO

Proteasome inhibitors (PIs) are effective against multiple myeloma (MM), but the mechanisms of action and bases of individual susceptibility remain unclear. Recent work linked PI sensitivity to protein synthesis and proteasome activity, raising the question whether different levels of proteasome expression and workload underlie PI sensitivity in MM cells (MMCs). Exploiting human MM lines characterized by differential PI sensitivity, we report that highly sensitive MMCs express lower proteasome levels and higher proteasomal workload than relatively PI-resistant MMCs, resulting in the accumulation of polyubiquitinated proteins at the expense of free ubiquitin (proteasome stress). Manipulating proteasome expression or workload alters apoptotic sensitivity to PI, demonstrating a cause-effect relationship between proteasome stress and apoptotic responses in MMCs. Intracellular immunostaining in primary, patient-derived MMCs reveals that polyubiquitinated proteins hallmark neoplastic plasma cells, in positive correlation with immunoglobulin (Ig) content, both intra- and interpatient. Moreover, overall proteasome activity of primary MMCs inversely correlates with apoptotic sensitivity to PI. Altogether, our data indicate that the balance between proteasome workload and degradative capacity represents a critical determinant of apoptotic sensitivity of MMCs to PI, potentially providing a framework for identifying indicators of responsiveness and designing novel combination therapies.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Cisteína Proteinase/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Leupeptinas/farmacologia , Camundongos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Células Tumorais Cultivadas
13.
Mol Cells ; 26(4): 323-8, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18648219

RESUMO

Eukaryotic cells continuously integrate intrinsic and extrinsic signals to adapt to the environment. When exposed to stressful conditions, cells activate compartment-specific adaptive responses. If these are insufficient, apoptosis ensues as an organismal defense line. The mechanisms that sense stress and set the transition from adaptive to mal-adaptive responses, activating apoptotic programs, are the subject of intense studies, also for their potential impact in cancer and degenerative disorders. In the former case, one would aim at lowering the threshold, in the latter instead to increase it. Protein synthesis, consuming energy for anabolic processes as well as for byproducts disposal, can be a significant source of stress, particularly when difficult-to-fold proteins are produced. Recent work from our and other laboratories on the differentiation of antibody secreting cells, revealed a regulatory circuit that integrates protein synthesis, secretion and degradation (proteostasis), into cell lifespan determination. The apoptotic elimination - after an industrious, yet short lifetime - of terminal immune effectors is crucial to maintain immune homeostasis. Linking proteostasis to cell death, this paradigm might prove useful for biotechnological purposes, and the design of novel anti-cancer therapies.


Assuntos
Senescência Celular/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico , Animais , Células Sanguíneas/citologia , Humanos , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...