Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794542

RESUMO

The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).

2.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732675

RESUMO

Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.

3.
Polymers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732705

RESUMO

Recently, increasing attention of researchers in the field of membrane technology has been paid to the development of membranes based on biopolymers. One of the well-proven polymers for the development of porous membranes is cellulose acetate (CA). This paper is devoted to the study of the influence of different parameters on ultrafiltration CA membrane formation and their transport properties, such as the variation in coagulation bath temperature, membrane shrinkage (post-treatment at 80 °C), introduction to casting CA solution of polymers (polyethylene glycol (PEG), polysulfone (PS), and Pluronic F127 (PL)) and carbon nanoparticles (SWCNTs, MWCNTs, GO, and C60). The structural and physicochemical properties of developed membranes were studied by scanning electron and atomic force microscopies, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The transport properties of developed CA-based membranes were evaluated in ultrafiltration of bovine serum albumin (BSA), dextran 110 and PVP K-90. All developed membranes rejected 90% compounds with a molecular weight from ~270,000 g/mol. It was shown that the combination of modifications (addition of PEG, PS, PL, PS-PL, and 0.5 wt% C60) led to an increase in the fluxes and BSA rejection coefficients with slight decrease in the flux recovery ratio. These changes were due to an increased macrovoid number, formation of a more open porous structure and/or thinner top selective, and decreased surface roughness and hydrophobization during C60 modification of blend membranes. Optimal transport properties were found for CA-PEG+C60 (the highest water-394 L/(m2h) and BSA-212 L/(m2h) fluxes) and CA-PS+C60 (maximal rejection coefficient of BSA-59%) membranes.

4.
Polymers (Basel) ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765688

RESUMO

Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux).

5.
Langmuir ; 39(20): 7212-7220, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172413

RESUMO

With increasing awareness about the ecological environment, increased attention has been paid to the application of eco-friendly materials in the field of marine antifouling. In this work, a novel coating having good mechanical strength and static marine antifouling characteristics was fabricated using cellulose nanocrystals (CNCs) as the skeleton material, with in situ growth of SiO2 as the basic superhydrophobic material and introducing hexadecyl trimethyl ammonium bromide (CTAB) and 4-bromo2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile (Econea) into the coating. Due to the high strength and rod structure of CNCs, the coating maintained super-hydrophobicity after 50 cycles of abrasion tests. Moreover, the addition of CTAB during the synthesis of SiO2 led to the hydrolysis and polycondensation of tetraethyl orthosilicate at the micellar interface. Econea was fully mixed with SiO2 nanoparticles, thus slowing down the rate of release of Econea. Meanwhile, the adhesion between the coating and the substrate reached 1.9 MPa, which can meet the application requirements for marine environments. The bioassay using bacteria (Escherichia coli) and diatoms (Nitzschia closterium) showed that the rate of inhibition of the coating on bacteria and diatoms could reach 99 and 90%, respectively, after immersion in artificial seawater for 28 days. This research provides a facile and promising fabricating solution of an eco-friendly CNC-based coating having strong antifouling characteristics suitable for marine environments.


Assuntos
Incrustação Biológica , Diatomáceas , Desinfetantes , Nanopartículas , Celulose/química , Incrustação Biológica/prevenção & controle , Cetrimônio , Dióxido de Silício , Nanopartículas/química
6.
Membranes (Basel) ; 13(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37233595

RESUMO

Presently, water pollution poses a serious threat to the environment; the removal of organic pollutants from resources, especially dyes, is very important. Nanofiltration (NF) is a promising membrane method to carry out this task. In the present work, advanced supported poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes were developed for NF of anionic dyes using bulk (the introduction of graphene oxide (GO) into the polymer matrix) and surface (the deposition of polyelectrolyte (PEL) layers by layer-by-layer (LbL) technique) modifications. The effect of PEL combinations (polydiallyldimethylammonium chloride/polyacrylic acid (PAA), polyethyleneimine (PEI)/PAA, and polyallylamine hydrochloride/PAA) and the number of PEL bilayers deposited by LbL method on properties of PPO-based membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. Membranes were evaluated in NF of food dye solutions in ethanol (Sunset yellow (SY), Congo red (CR), and Alphazurine (AZ)). The supported PPO membrane, modified with 0.7 wt.% GO and three PEI/PAA bilayers, exhibited optimal transport characteristics: ethanol, SY, CR, and AZ solutions permeability of 0.58, 0.57, 0.50, and 0.44 kg/(m2h atm), respectively, with a high level of rejection coefficients-58% for SY, 63% for CR, and 58% for AZ. It was shown that the combined use of bulk and surface modifications significantly improved the characteristics of the PPO membrane in NF of dyes.

7.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050278

RESUMO

Membrane fouling is a serious issue in membrane technology which cannot be completely avoided but can be diminished. The perspective technique of membrane modification is the introduction of hydrophilic polymers or polyelectrolytes into the coagulation bath during membrane preparation via non-solvent-induced phase separation. The influence of polyacrylic acid (PAA) molecular weight (100,000, 250,000 and 450,000 g·mol-1) added to the aqueous coagulation bath (0.4-2.0 wt.%) on the polysulfone membrane structure, surface roughness, water contact angle and zeta potential of the selective layer, as well as the separation and antifouling performance, was systematically studied. It was found that membranes obtained via the addition of PAA with higher molecular weight feature smaller pore size and porosity, extremely high hydrophilicity and higher values of negative charge of membrane surface. It was shown that the increase in PAA concentration from 0.4 wt.% to 2.0 wt.% for all studied PAA molecular weights yielded a substantial decrease in water contact angle compared with the reference membrane (65 ± 2°) (from 27 ± 2° to 17 ± 2° for PAA with Mn = 100,000 g·mol-1; from 25 ± 2° to 16 ± 2° for PAA with Mn = 250,000 g·mol-1; and from 19 ± 2° to 10 ± 2° for PAA with Mn = 450,000 g·mol-1). An increase in PAA molecular weight from 100,000 to 450,000 g·mol-1 led to a decrease in membrane permeability, an increase in rejection and tailoring excellent antifouling performance in the ultrafiltration of humic acid solutions. The fouling recovery ratio increased from 73% for the reference membrane up to 91%, 100% and 136% for membranes modified with the addition to the coagulation bath of 1.5 wt.% of PAA with molecular weights of 100,000 g·mol-1, 250,000 g·mol-1 and 450,000 g·mol-1, respectively. Overall, the addition of PAA of different molecular weights to the coagulation bath is an efficient tool to adjust membrane separation and antifouling properties for different separation tasks.

8.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904461

RESUMO

Membrane technology is an actively developing area of modern societies; with the help of high-performance membranes, it is possible to separate various mixtures for many industrial tasks. The objective of this study was to develop novel effective membranes based on poly(vinylidene fluoride) (PVDF) by its modification with various nanoparticles (TiO2, Ag-TiO2, GO-TiO2, and MWCNT/TiO2). Two types of membranes have been developed: dense membranes for pervaporation and porous membranes for ultrafiltration. The optimal content of nanoparticles in the PVDF matrix was selected: 0.3 wt% for porous membranes and 0.5 wt% for dense ones. The structural and physicochemical properties of the developed membranes were studied using FTIR spectroscopy, thermogravimetric analysis, scanning electron and atomic force microscopies, and measuring of contact angles. In addition, the molecular dynamics simulation of PVDF and the TiO2 system was applied. The transport properties and cleaning ability under ultraviolet irradiation of porous membranes were studied by ultrafiltration of a bovine serum albumin solution. The transport properties of dense membranes were tested in pervaporation separation of a water/isopropanol mixture. It was found that membranes with the optimal transport properties are as follows: the dense membrane modified with 0.5 wt% GO-TiO2 and the porous membrane modified with 0.3 wt% MWCNT/TiO2 and Ag-TiO2.

9.
Polymers (Basel) ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987122

RESUMO

Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal-organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.

10.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295667

RESUMO

Metal-organic frameworks (MOFs) are perceptive modifiers for the creation of mixed matrix membranes to improve the pervaporation performance of polymeric membranes. In this study, novel membranes based on polyvinyl alcohol (PVA) modified with Zr-MOFs (MIL-140A, MIL-140A-AcOH, and MIL-140A-AcOH-EDTA) particles were developed for enhanced pervaporation dehydration of isopropanol. Two membrane types (substrateless-freestanding; and formed on polyacrylonitrile support-composite) were prepared. The additional cross-linking of membranes with glutaraldehyde was carried out to circumvent membrane stability in pervaporation dehydration of diluted solutions. The synthesized Zr-MOFs were characterized by scanning electron microscopy, X-ray powder diffraction analysis, and specific surface area measurement. The structure and physicochemical properties of the developed membranes were investigated by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, thermogravimetric analysis, swelling experiments, and contact angle measurements. The PVA and PVA/Zr-MOFs membranes were evaluated in pervaporation dehydration of isopropanol in a wide concentration range. It was found that the composite cross-linked PVA membrane with 10 wt% MIL-140A had optimal pervaporation performance in the isopropanol dehydration (12-100 wt% water) at 22 °C: 0.15-1.33 kg/(m2h) permeation flux, 99.9 wt% water in the permeate, and is promising for the use in the industrial dehydration of alcohols.

11.
Membranes (Basel) ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36295726

RESUMO

Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).

12.
Membranes (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135851

RESUMO

Purification and concentration of bioalcohols is gaining new status due to their use as a promising alternative liquid biofuel. In this work, novel high-performance asymmetric membranes based on a block copolymer (BCP) synthesized from polydimethylsiloxane (PDMS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were developed for enhanced pervaporation dehydration of ethanol. Improvement in dehydration performance was achieved by obtaining BCP membranes with a "non-perforated" porous structure and through surface and bulk modifications with graphene oxide (GO). Formation of the BCP was confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. The changes to morphology and physicochemical properties of the developed BCP and BCP/GO membranes were studied by scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA) and contact angle measurements. Transport properties of the developed membranes were evaluated by the pervaporation dehydration of ethanol over a wide concentration range (4.4-70 wt.% water) at 22 °C. The BCP (PDMS:PPO:2,4-diisocyanatotoluene = 41:58:1 wt.% composition) membrane modified with 0.7 wt.% GO demonstrated optimal transport characteristics: 80-90 g/(m2h) permeation flux with high selectivity (76.8-98.8 wt.% water in the permeate, separation factor of 72-34) and pervaporation separation index (PSI) of 5.5-2.9.

13.
Carbohydr Polym ; 294: 119803, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868763

RESUMO

TEMPO-oxidized cellulose nanofibrils (CNFs) possess lots of attractive properties. However, recycling of TEMPO is desirable because of ecological and economic demands. In this study, a novel strategy integrating direct reuse and extraction recovery of TEMPO was developed. 50 % of filtrates after TEMPO oxidation were directly reused and half of the fresh TEMPO was added to maintain a constant dosage, the obtained CNFs within 2 cycles shared similar carboxylate contents, crystallinity, and homogeneous width compared to the original ones. Furthermore, TEMPO in another 50 % of filtrates was extracted by ethyl acetate followed by distillation. The CNFs produced using the extracted TEMPO had almost the same properties compared to those of original ones, suggesting a negligible loss of activity of the recovered catalyst. Compared to the traditional route, the combined strategy exhibited a 31.3 % reduction in production costs, which enables clean and cost-effective production of CNFs and shows a promising industrial feasibility.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Óxidos N-Cíclicos , Oxirredução
14.
Membranes (Basel) ; 12(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877856

RESUMO

The application of environmentally friendly and energy-efficient membrane processes allows improvement the ecological safety and sustainability of industrial production. However, the effective application of membrane processes requires novel high-performance thin film composite (TFC) membranes based on biopolymers to solve environmental problems. In this work for the first time novel thin film nanocomposite (TFN) membranes based on biopolymer chitosan succinate (ChS) modified with the metal organic framework iron 1,3,5-benzenetricarboxylate (Fe-BTC) were developed for enhanced pervaporation dehydration. The formation of a selective layer of TFN membranes on the porous membrane-support was carried out by two methods-dynamic technique and physical adsorption. The effect of the membrane formation method and Fe-BTC content in ChS layer on the structure and physicochemical properties of TFN membranes was investigated. The developed TFN ChS-based membranes were evaluated in the pervaporation dehydration of isopropanol (12-30 wt.% water). It was found that TFN ChS-Fe-BTC membranes prepared by two methods demonstrated improved permeation flux compared to the reference TFC ChS membrane. The best transport properties in pervaporation dehydration of isopropanol (12-30 wt.% water) were possessed by TFN membranes with 40 wt.% Fe-BTC prepared by dynamic technique (permeation flux 99-499 g m-2 h-1 and 99.99% water in permeate) and TFN membranes with 5 wt.% Fe-BTC developed by physical adsorption (permeation flux 180-701 g m-2 h-1 and 99.99% water in permeate).

15.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458354

RESUMO

Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.

16.
Polymers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215603

RESUMO

Ethylene glycol (EG) is widely used in various economic and industrial fields. The demand for its efficient separation and recovery from water is constantly growing. To improve the pervaporation characteristics of a poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membrane in dehydration of ethylene glycol, the modification with graphene oxide (GO) nanoparticles was used. The effects of the introduction of various GO quantities into the PPO matrix on the structure and physicochemical properties were studied by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), swelling experiments, and contact angle measurements. Two types of membranes based on PPO and PPO/GO composite were developed: dense membranes and supported membranes on a fluoroplast substrate (MFFC). Transport properties of the developed membranes were evaluated in the pervaporation dehydration of EG in a wide concentration range (10-90 wt.% and 10-30 wt.% water for the dense and supported membranes, respectively). The supported PPO/GO(0.7%)/MFFC membrane demonstrated the best transport properties in pervaporation dehydration of EG (10-30 wt.% water) at 22 °C: permeation flux ca. 15 times higher compared to dense PPO membrane-180-230 g/(m2·h)), 99.8-99.6 wt.% water in the permeate. The membrane is suitable for the promising industrial application.

17.
J Phys Chem B ; 125(32): 9197-9212, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34375109

RESUMO

Light fullerenes, C60 and C70, have significant potential in biomedical applications due to their ability to absorb reactive oxygen species, inhibit the development of tumors, inactivate viruses and bacteria, and as the basis for developing systems for targeted drug delivery. However, the hydrophobicity of individual fullerenes complicates their practical use; therefore, creating water-soluble derivatives of fullerenes is increasingly important. Currently, the most studied soluble adducts of fullerenes are polyhydroxy fullerenes or fullerenols. Unfortunately, investigations of fullerenol biocompatibility are fragmental. They often lack reproducibility both in the synthesis of the compounds and their biological action. We here investigate the biocompatibility of a well-defined fullerenol C60(OH)24 obtained using methods that minimize the content of impurities and quantitatively characterize the product's composition. We carry out comprehensive biochemical and biophysical investigations of C60(OH)24 that include photodynamic properties, cyto- and genotoxicity, hemocompatibility (spontaneous and photo-induced hemolysis, platelet aggregation), and the thermodynamic characteristics of C60(OH)24 binding to human serum albumin and DNA. The performed studies show good biocompatibility of fullerenol C60(OH)24, which makes it a promising object for potential use in biomedicine.


Assuntos
Fulerenos , Simulação por Computador , Fulerenos/farmacologia , Humanos , Reprodutibilidade dos Testes , Água
18.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451344

RESUMO

Wide application of ultrafiltration in different industrial fields requires the development of new membranes with tailored properties and good antifouling stability. This study is devoted to the improvement of ultrafiltration properties of poly(m-phenylene isophtalamide) (PA) membranes by modification with titanium oxide (TiO2) particles. The introduction of TiO2 particles improved membrane separation performance and increased antifouling stability and cleaning ability under UV irradiation. The developed membranes were characterized by scanning electron and atomic force microscopy methods, the measurements of water contact angle, and total porosimetry. The transport properties of the PA and PA/TiO2 membranes were tested in ultrafiltration of industrially important feeds: coolant lubricant (cutting fluid) emulsion (5 wt.% in water) and bovine serum albumin (BSA) solution (0.5 wt.%). The PA/TiO2 (0.3 wt.%) membrane was found to possess optimal transport characteristics in ultrafiltration of coolant lubricant emulsion due to the highest pure water and coolant lubricant fluxes (1146 and 32 L/(m2 h), respectively), rejection coefficient (100%), and flux recovery ratio (84%). Furthermore, this membrane featured improved ability of surface contamination degradation after UV irradiation in prolonged ultrafiltration of BSA, demonstrating a high flux recovery ratio (89-94%).

19.
Membranes (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916137

RESUMO

Transport characteristics of sodium alginate (SA) membranes cross-linked with CaCl2 and modified with fullerenol and fullerene derivative with L-arginine for pervaporation dehydration were improved applying various approaches, including the selection of a porous substrate for the creation of a thin selective SA-based layer, and the deposition of nano-sized polyelectrolyte (PEL) layers through the use of a layer-by-layer (Lbl) method. The impacts of commercial porous substrates made of polyacrylonitrile (PAN), regenerated cellulose, and aromatic polysulfone amide were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), standard porosimetry method, and water filtration. The effects of PEL combinations (such as poly(sodium 4-styrene sulfonate) (PSS)/SA, PSS/chitosan, PSS/polyacrylic acid, PSS/poly(allylamine hydrochloride)) and the number of PEL bilayers deposited with the Lbl technique on the properties of the SA and SA/fullerene derivative membranes were studied by SEM, AFM, and contact angle measurements. The best characteristics were exhibited by a cross-linked PAN-supported SA/fullerenol (5%) membrane with five PSS/SA bilayers: permeation flux of 0.68-1.38 kg/(m2h), 0.18-1.55 kg/(m2h), and 0.50-1.15 kg/(m2h), and over 99.7, 99.0, and 89.0 wt.% water in the permeate for the pervaporation dehydration of isopropanol (12-70 wt.% water), ethanol (4-70 wt.% water), and tetrahydrofuran (5.7-70 wt.% water), respectively. It was demonstrated that the mutual application of bulk and surface modifications essentially improved the membrane's characteristics in pervaporation dehydration.

20.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668120

RESUMO

Membrane methods, especially pervaporation, are quickly growing up. In line with that, effective membrane materials based on biopolymers are required for the industrially significant mixtures separation. To essentially improve membrane transport characteristics, the application of the surface or/and bulk modifications can be carried out. In the present study, novel dense and supported membranes based on hydroxyethyl cellulose (HEC)/sodium alginate (SA) were developed for pervaporation dehydration of isopropanol using several approaches: (1) the selection of the optimal ratio of polymers, (2) the introduction of fullerenol in blend polymer matrix, (3) the selection of the optimal cross-linking agent for the membranes, (4) the application of layer-by-layer deposition of polyelectrolytes on supported membrane surface (poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) and PSS/SA). Structural and physicochemical characteristics of the membranes were analyzed by different methods. A cross-linked supported membrane based on HEC/SA/fullerenol (5%) composite possessed the following transport characteristics in pervaporation dehydration of isopropanol (12-50 wt.% water): 0.42-1.72 kg/(m2h) permeation flux, and 77.8-99.99 wt.% water content in the permeate. The surface modification of this membrane with 5 bilayers of PSS/PAH and PSS/SA resulted in the increase of permeation flux up to 0.47-3.0 and 0.46-1.9 kg/(m2h), respectively, with lower selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...