Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Clin Med ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892643

RESUMO

INTRODUCTION: Primary ciliary dyskinesia (PCD) is a congenital thoracic disorder caused by dysfunction of motile cilia, resulting in insufficient mucociliary clearance of the lungs. The overall aim of this study is to identify causative defective genes in PCD-affected individuals in the Kuwaiti population. METHODS: A cohort of multiple consanguineous PCD families was identified from Kuwaiti patients and genomic DNA from the family members was isolated using standard procedures. The DNA samples from all affected individuals were analyzed by whole exome sequencing (WES). Transmission electron microscopy (TEM) and immunofluorescent analysis (IF) were performed on samples obtained by nasal brushings to identify specific structural abnormalities within ciliated cells. RESULTS: Here, we present six multiplex families with 11 patients who all presented with typical PCD symptoms. Ten out of eleven patients inherited a 3 bp homozygous deletion of GAA in RSPH9, whereas the eleventh patients inherited this variant in trans with a frameshift deletion in RSPH9. Genetic results were confirmed by segregation analysis. The in-frame deletion of GAA in RSPH9 has previously been published as pathogenic in both annotated RSPH9 transcript variants (1 and 2). In contrast, the previously unpublished RSPH9 frameshift deletion identified in KU-15.IV2 impacts only RSPH9 transcript variant two. Regarding all 11 PCD individuals analyzed, IF results demonstrated absence of RSPH9 protein and TEM analysis showed the typical findings in RSPH9 mutant individuals. CONCLUSIONS: We present the largest cohort of PCD individuals affected by the founder in-frame deletion GAA in RSPH9. This founder variant is the most common PCD-causing variant in Bedouin Arabs in Kuwait.

2.
Presse Med ; 52(3): 104171, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37516247

RESUMO

BACKGROUND AND OBJECTIVES: Primary ciliary dyskinesia (PCD, ORPHA:244) is a group of rare genetic disorders characterized by dysfunction of motile cilia. It is phenotypically and genetically heterogeneous, with more than 50 genes involved. Thanks to genetic, clinical, and functional characterization, immense progress has been made in the understanding and diagnosis of PCD. Nevertheless, it is underdiagnosed due to the heterogeneous phenotype and complexity of diagnosis. This review aims to help clinicians navigate this heterogeneous group of diseases. Here, we describe the broad spectrum of phenotypes associated with PCD and address pitfalls and difficult-to-interpret findings to avoid misinterpretation. METHOD: Review of literature CONCLUSION: PCD diagnosis is complex and requires integration of history, clinical picture, imaging, functional and structural analysis of motile cilia and, if available, genetic analysis to make a definitive diagnosis. It is critical that we continue to expand our knowledge of this group of rare disorders to improve the identification of PCD patients and to develop evidence-based therapeutic approaches.

3.
Autophagy ; 19(1): 24-43, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613303

RESUMO

Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.


Assuntos
Autofagia , Ciliopatias , Humanos , Autofagia/fisiologia , Cílios/metabolismo , Ciliopatias/metabolismo , Microtúbulos , Proteínas Mitocondriais/metabolismo
4.
Front Genet ; 13: 1017280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303540

RESUMO

Introduction: Primary ciliary dyskinesia (PCD) is caused by dysfunction of motile cilia resulting in insufficient mucociliary clearance of the lungs. The overall aim of this study is to identify disease causing genetic variants for PCD patients in the Kuwaiti population. Methods: A cohort of multiple consanguineous PCD families was identified from Kuwaiti patients and genomic DNA from the family members was analysed for variant screening. Transmission electron microscopy (TEM) and immunofluorescent (IF) analyses were performed on nasal brushings to detect specific structural abnormalities within ciliated cells. Results: All the patients inherited the same founder variant in DNAI2 and exhibited PCD symptoms. TEM analysis demonstrated lack of outer dynein arms (ODA) in all analysed samples. IF analysis confirmed absence of DNAI1, DNAI2, and DNAH5 from the ciliary axoneme. Whole exome sequencing, autozygosity mapping and segregation analysis confirmed that seven patients carry the same homozygous missense variant (DNAI2:c.740G>A; p.Arg247Gln; rs755060592). Conclusion: DNAI2:c.740G>A is the founder variant causing PCD in patients belonging to a particular Arabian tribe which practices consanguineous marriages.

5.
Kidney Int Rep ; 7(9): 2016-2028, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36090483

RESUMO

Introduction: Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We assessed differences in kidney survival, impact of variant type, and the association of clinical characteristics with declining kidney function. Methods: Data was obtained from 3 independent sources, namely the network for early onset cystic kidney diseases clinical registry (n = 105), an online survey sent out to the European Reference Network for Rare Kidney Diseases (n = 60), and a literature search (n = 218). Results: A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85 NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3-12.0); NPHP1, 13.5 years (interquartile range 10.5-16.5); NPHP4, 16.0 years (interquartile range 11.0-25.0); and NPHP11/TMEM67, 19.0 years (interquartile range 8.7-28.0). Kidney survival was significantly associated with the underlying variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio 2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was linked to an accelerated glomerular filtration rate (GFR) decline. Conclusion: The presented data will enable clinicians to better estimate kidney prognosis of distinct patients with NPH and thereby allow personalized counseling.

6.
ERJ Open Res ; 8(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35983540

RESUMO

Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterised by impaired mucociliary clearance leading to irreversible lung damage. In contrast to other rare lung diseases like cystic fibrosis (CF), there are only few clinical trials and limited evidence-based treatments. Management is mainly based on expert opinions and treatment is challenging due to a wide range of clinical manifestations and disease severity. To improve clinical and translational research and facilitate development of new treatments, the clinical trial network for PCD (PCD-CTN) was founded in 2020 under the framework of the European Reference Network (ERN)-LUNG PCD Core. Applications from European PCD sites interested in participating in the PCD-CTN were requested. Inclusion criteria consisted of patient numbers, membership of ERN-LUNG PCD Core, use of associated standards of care, experience in PCD and/or CF clinical research, resources to run clinical trials, good clinical practice (GCP) certifications and institutional support. So far, applications from 22 trial sites in 18 European countries have been approved, including >1400 adult and >1600 paediatric individuals with PCD. The PCD-CTN is headed by a coordinating centre and consists of a steering and executive committee, a data safety monitoring board and committees for protocol review, training and standardisation. A strong association with patient organisations and industrial companies are further cornerstones. All participating trial sites agreed on a code of conduct. As CTNs from other diseases have demonstrated successfully, this newly formed PCD-CTN operates to establish evidence-based treatments for this orphan disease and to bring new personalised treatment approaches to patients.

7.
Stud Health Technol Inform ; 295: 55-58, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35773805

RESUMO

The ERN-LUNG Population Registry is a new European-wide collection of patients with rare lung diseases, allowing patients to register online in the registry. Medical experts can recruit patients in the registry for disease-specific registries and care options. The Population Registry was implemented on the basis of the open source software OSSE and extended by functions for the self-registration of patients. Patients were invited through patient organizations between May and November 2022. 115 patients registered online in the registry, whereas 60 of them provided full data in the registry form. After first months of usage, further dissemination of the registry is necessary to reach more patients, e.g. by recruiting them via medical centres directly. Improvements of the registry should be conducted to achieve a higher number of fully completed forms.


Assuntos
Pneumopatias , Doenças Raras , Humanos , Pulmão , Sistema de Registros , Software
8.
Ann Am Thorac Soc ; 19(8): 1275-1284, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202559

RESUMO

Rationale: Primary ciliary dyskinesia (PCD) is a heterogeneous, multisystem disorder characterized by defective ciliary beating. Diagnostic guidelines of the American Thoracic Society and European Respiratory Society recommend measurement of nasal nitric oxide (nNO) for PCD diagnosis. Several studies demonstrated low nNO production rates in PCD individuals, but underlying causes remain elusive. Objectives: To determine nNO production rates in a well-characterized PCD cohort, including subgroup analyses with regard to ultrastructural and ciliary beating phenotypes. Methods: This study included 301 individuals assessed according to European Respiratory Society guidelines. Diagnostic cutoffs for nNO production rates for this study cohort and subgroups with normal and abnormal ultrastructure were determined. Diagnostic accuracy was also tested for the widely used 77 nl/min cutoff in this study cohort. The relationship between nNO production rates and ciliary beat frequencies (CBFs) was evaluated. Results: The study cohort comprised 180 individuals with definite PCD diagnosis, including 160 individuals with genetic diagnosis, 16 individuals with probable PCD diagnosis, and 105 disease controls. The 77 nl/min nNO cutoff showed a test sensitivity of 0.92 and specificity of 0.86. Test sensitivity was lower (0.85) in the subgroup of 47 PCD individuals with normal ultrastructure compared with 133 PCD individuals with abnormal ultrastructure (0.95). The optimal diagnostic cutoff for the nNO production rate for the whole study cohort was 69.8 nl/min (sensitivity, 0.92; specificity, 0.89); however, it was 107.8 nl/min (sensitivity, 0.89; specificity, 0.78) for the subgroup of PCD with normal ultrastructure. PCD individuals with normal ultrastructure compared with abnormal ultrastructure showed higher ciliary motility. Consistently, PCD individuals with higher CBFs showed higher nNO production rates. In addition, laterality defects occurred less frequently in PCD with normal ultrastructure. Conclusions: Measurements of nNO below the widely used 77 nl/min cutoff are less sensitive in detecting PCD individuals with normal ultrastructure. Our findings indicate that higher nNO production in this subgroup with a higher cutoff for the nNO production rate (107.8 nl/min) and higher residual ciliary motility is dependent on the underlying molecular PCD defect. Higher nNO production rates, higher residual CBFs, and the lower prevalence of laterality defects hamper diagnosis of PCD with normal ultrastructure. Adjusting the cutoff of nNO production rate to 107.8 nl/min might promote diagnosing PCD with normal ultrastructure.


Assuntos
Transtornos da Motilidade Ciliar , Síndrome de Kartagener , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/diagnóstico , Estudos de Coortes , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Óxido Nítrico , Fenótipo
9.
Stud Health Technol Inform ; 278: 41-48, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34042874

RESUMO

Rare lung diseases affect 1.5-3 million people in Europe while causing bad prognosis or early deaths for patients. The European Reference Network for Respiratory Diseases (ERN-Lung) is a patient centric network, funded by the European Union (EU). The aims of ERN-LUNG is to increase healthcare and research regarding rare respiratory diseases. An initial need for cross-border healthcare and research is the use of registries and databases. A typical problem in registries for RDs is the data exchange, since the registries use different kind of data with different types or descriptions. Therefore, ERN-Lung decided to create a new Registry Data-Warehouse (RDW) where different existing registries are connected to enable cross-border healthcare within ERN-Lung. This work facilitates the aims, conception and implementation for the RDW, while considering a semantic interoperability approach. We created a common dataset (CDS) to have a common descriptions of respiratory diseases patients within the ERN registries. We further developed the RDW based on Open Source Registry System for Rare Diseases (OSSE), which includes a Metadata Repository with the Samply.MDR to unique describe data for the minimal dataset. Within the RDW, data from existing registries is not stored in a central database. The RDW uses the approach of the "Decentral Search" and can send requests to the connected registries, whereas only aggregated data is returned about how many patients with specific characteristics are available. However, further work is needed to connect the different existing registries to the RDW and to perform first studies.


Assuntos
Data Warehousing , Doenças Raras , Europa (Continente)/epidemiologia , Humanos , Metadados , Doenças Raras/epidemiologia , Sistema de Registros
10.
PLoS Genet ; 17(2): e1009306, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635866

RESUMO

Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families.


Assuntos
Dineínas do Axonema/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Infertilidade Masculina/metabolismo , Espermatozoides/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/ultraestrutura , Axonema/genética , Axonema/ultraestrutura , Cílios/genética , Estudos de Coortes , Citoplasma/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Flagelos/genética , Flagelos/ultraestrutura , Humanos , Infertilidade Masculina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Espermatozoides/ultraestrutura
11.
Mol Hum Reprod ; 27(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33561200

RESUMO

Motile cilia line the efferent ducts of the mammalian male reproductive tract. Several recent mouse studies have demonstrated that a reduced generation of multiple motile cilia in efferent ducts is associated with obstructive oligozoospermia and fertility issues. However, the sole impact of efferent duct cilia dysmotility on male infertility has not been studied so far either in mice or human. Using video microscopy, histological- and ultrastructural analyses, we examined male reproductive tracts of mice deficient for the axonemal motor protein DNAH5: this defect exclusively disrupts the outer dynein arm (ODA) composition of motile cilia but not the ODA composition and motility of sperm flagella. These mice have immotile efferent duct cilia that lack ODAs, which are essential for ciliary beat generation. Furthermore, they show accumulation of sperm in the efferent duct. Notably, the ultrastructure and motility of sperm from these males are unaffected. Likewise, human individuals with loss-of-function DNAH5 mutations present with reduced sperm count in the ejaculate (oligozoospermia) and dilatations of the epididymal head but normal sperm motility, similar to DNAH5 deficient mice. The findings of this translational study demonstrate, in both mice and men, that efferent duct ciliary motility is important for male reproductive fitness and uncovers a novel pathomechanism distinct from primary defects of sperm motility (asthenozoospermia). If future work can identify environmental factors or defects in genes other than DNAH5 that cause efferent duct cilia dysmotility, this will help unravel other causes of oligozoospermia and may influence future practices in genetic and fertility counseling as well as ART.


Assuntos
Dineínas do Axonema/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Genitália Masculina/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/patologia , Animais , Dineínas do Axonema/genética , Axonema/genética , Axonema/ultraestrutura , Cílios/genética , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Predisposição Genética para Doença , Genitália Masculina/ultraestrutura , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Movimento , Mutação , Oligospermia/genética , Oligospermia/metabolismo , Oligospermia/patologia , Fenótipo , Espermatozoides/ultraestrutura
12.
J Med Genet ; 58(9): 629-636, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917769

RESUMO

BACKGROUND: Hereditary cystic kidney diseases such as nephronophthisis, polycystic kidney disease and Bardet-Biedl syndrome (BBS) are caused by a dysfunction of primary cilia. Cilia are involved in a variety of cellular functions and perceptions, with one of them being the sense of smell. Hyposmia is a typical feature found in patients with BBS. However, reports of olfactory dysfunction in other cystic kidney diseases are sparse. Here we provide a systematic survey on olfaction in a large cohort of patients displaying genetically determined renal ciliopathies. METHODS: We performed a match-controlled systematic olfactory evaluation in a group of 75 patients with a defined genetic background using age adapted and validated odour identification tests. RESULTS: Test results revealed a significant olfactory deficit in patients carrying TMEM67 variants (n=4), while all other genetic disorders causing nephronophthisis (n=25) or polycystic kidney disease (n=18) were not associated with an impaired sense of smell. Also in patients with BBS, olfactory performance was depending on the underlying molecular defect. While defects in the BBS1 gene (n=9) had no impact on the sense of smell, all other BBS gene disorders (n=19) were associated with significant hyposmia. Noteworthy, there was no correlation of the olfactory deficit with the level of renal impairment. CONCLUSION: Hyposmia is a part of the clinical spectrum of BBS and of other renal ciliopathies. Depending on the genetic background, clinicians should be aware of this subtle and so far underappreciated symptom when clinically assessing patients with BBS or TMEM67 gene variants.


Assuntos
Ciliopatias/diagnóstico , Ciliopatias/genética , Predisposição Genética para Doença , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Fenótipo , Olfato , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Genótipo , Taxa de Filtração Glomerular , Humanos , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Nat Commun ; 11(1): 5520, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139725

RESUMO

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Assuntos
Nucleotídeos de Adenina/metabolismo , Astenozoospermia/genética , Proteínas do Citoesqueleto/deficiência , Situs Inversus/genética , Adolescente , Adulto , Animais , Astenozoospermia/patologia , Axonema/ultraestrutura , Sistemas CRISPR-Cas/genética , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas do Citoesqueleto/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Epididimo/patologia , Feminino , Flagelos/metabolismo , Flagelos/ultraestrutura , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Planárias/citologia , Planárias/genética , Planárias/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Situs Inversus/diagnóstico por imagem , Situs Inversus/patologia , Motilidade dos Espermatozoides/genética , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma
14.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494577

RESUMO

Primary ciliary dyskinesia (PCD) is a rare inherited disease characterised by malfunctioning cilia leading to a heterogeneous clinical phenotype with many organ systems affected. There is a lack of data on clinical presentation, prognosis and effectiveness of treatments, making it mandatory to improve the scientific evidence base. This article reviews the data resources that are available in Europe for clinical and epidemiological research in PCD, namely established national PCD registries and national cohort studies, plus two large collaborative efforts (the international PCD (iPCD) Cohort and the International PCD Registry), and discusses their strengths, limitations and perspectives. Denmark, Cyprus, Norway and Switzerland have national population-based registries, while England and France conduct multicentre cohort studies. Based on the data contained in these registries, the prevalence of diagnosed PCD is 3-7 per 100 000 in children and 0.2-6 per 100 000 in adults. All registries, together with other studies from Europe and beyond, contribute to the iPCD Cohort, a collaborative study including data from over 4000 PCD patients, and to the International PCD Registry, which is part of the ERN (European Reference Network)-LUNG network. This rich resource of readily available, standardised and contemporaneous data will allow obtaining fast answers to emerging clinical and research questions in PCD.

15.
Am J Respir Cell Mol Biol ; 62(3): 382-396, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31545650

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous chronic destructive airway disease. PCD is traditionally diagnosed by nasal nitric oxide measurement, analysis of ciliary beating, transmission electron microscopy (TEM), and/or genetic testing. In most genetic PCD variants, laterality defects can occur. However, it is difficult to establish a diagnosis in individuals with PCD and central pair (CP) defects, and alternative strategies are required because of very subtle ciliary beating abnormalities, a normal ciliary ultrastructure, and normal situs composition. Mutations in HYDIN are known to cause CP defects, but the genetic analysis of HYDIN variants is confounded by the pseudogene HYDIN2, which is almost identical in terms of intron/exon structure. We have previously shown that several types of PCD can be diagnosed via immunofluorescence (IF) microscopy analyses. Here, using IF microscopy, we demonstrated that in individuals with PCD and CP defects, the CP-associated protein SPEF2 is absent in HYDIN-mutant cells, revealing its dependence on functional HYDIN. Next, we performed IF analyses of SPEF2 in respiratory cells from 189 individuals with suspected PCD and situs solitus. Forty-one of the 189 individuals had undetectable SPEF2 and were subjected to a genetic analysis, which revealed one novel loss-of-function mutation in SPEF2 and three reported and 13 novel HYDIN mutations in 15 individuals. The remaining 25 individuals are good candidates for new, as-yet uncharacterized PCD variants that affect the CP apparatus. SPEF2 mutations have been associated with male infertility but have not previously been identified to cause PCD. We identified a mutation of SPEF2 that is causative for PCD with a CP defect. We conclude that SPEF2 IF analyses can facilitate the detection of CP defects and evaluation of the pathogenicity of HYDIN variants, thus aiding the molecular diagnosis of CP defects.


Assuntos
Proteínas de Ciclo Celular/deficiência , Cílios/química , Transtornos da Motilidade Ciliar/genética , Proteínas dos Microfilamentos/genética , Axonema/química , Axonema/ultraestrutura , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/patologia , Códon sem Sentido , Estudos de Coortes , Análise Mutacional de DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Heterogeneidade Genética , Homozigoto , Humanos , Mutação com Perda de Função , Masculino , Proteínas dos Microfilamentos/fisiologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Depuração Mucociliar/genética , Mutação , Mutação de Sentido Incorreto , Linhagem , Cultura Primária de Células , Situs Inversus/diagnóstico , Situs Inversus/genética , Situs Inversus/patologia
16.
Am J Hum Genet ; 105(5): 1030-1039, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630787

RESUMO

Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.


Assuntos
Ventrículos Cerebrais/patologia , Ciliopatias/genética , Fatores de Transcrição Forkhead/genética , Hidrocefalia/genética , Mutação/genética , Corpos Basais/patologia , Cílios/genética , Cílios/patologia , Ciliopatias/patologia , Epêndima/patologia , Células Epiteliais/patologia , Humanos , Hidrocefalia/patologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-31638833

RESUMO

Background - Nearly one in 100 live births presents with congenital heart defects (CHD). CHD are frequently associated with laterality defects, such as situs inversus totalis (SIT), a mirrored positioning of internal organs. Body laterality is established by a complex process: monocilia at the embryonic left-right organizer (LRO) facilitate both the generation and sensing of a leftward fluid flow. This induces the conserved left-sided Nodal signaling cascade to initiate asymmetric organogenesis. Primary ciliary dyskinesia (PCD) originates from dysfunction of motile cilia, causing symptoms such as chronic sinusitis, bronchiectasis and frequently SIT. The most frequently mutated gene in PCD, DNAH5 is associated with randomization of body asymmetry resulting in SIT in half of the patients; however, its relation to CHD occurrence in humans has not been investigated in detail so far. Methods - We performed genotype / phenotype correlations in 132 PCD patients carrying disease-causing DNAH5 mutations, focusing on situs defects and CHD. Using high speed video microscopy-, immunofluorescence-, and in situ hybridization analyses, we investigated the initial steps of left-right axis establishment in embryos of a Dnah5 mutant mouse model. Results - 65.9% (87 / 132) of the PCD patients carrying disease-causing DNAH5 mutations had laterality defects: 88.5% (77 / 87) presented with SIT, 11.5% (10 / 87) presented with situs ambiguus; and 6.1% (8 / 132) presented with CHD. In Dnah5mut/mut mice, embryonic LRO monocilia lack outer dynein arms resulting in immotile cilia, impaired flow at the LRO, and randomization of Nodal signaling with normal, reversed or bilateral expression of key molecules. Conclusions - For the first time, we directly demonstrate the disease-mechanism of laterality defects linked to DNAH5 deficiency at the molecular level during embryogenesis. We highlight that mutations in DNAH5 are not only associated with classical randomization of left-right body asymmetry but also with severe laterality defects including CHD.

18.
J Clin Invest ; 129(7): 2841-2855, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31094706

RESUMO

About 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the development of proper left-right asymmetry and cause heterotaxy, the incorrect placement of visceral organs. Intriguingly, signaling cascades such as mTor that influence mitochondrial biogenesis also affect ciliogenesis, and can cause heterotaxy-like phenotypes in zebrafish. Here, we identify levels of mitochondrial function as a determinant for ciliogenesis and a cause for heterotaxy. We detected reduced mitochondrial DNA content in biopsies of heterotaxy patients. Manipulation of mitochondrial function revealed a reciprocal influence on ciliogenesis and affected cilia-dependent processes in zebrafish, human fibroblasts and Tetrahymena thermophila. Exome analysis of heterotaxy patients revealed an increased burden of rare damaging variants in mitochondria-associated genes as compared to 1000 Genome controls. Knockdown of such candidate genes caused cilia elongation and ciliopathy-like phenotypes in zebrafish, which could not be rescued by RNA encoding damaging rare variants identified in heterotaxy patients. Our findings suggest that ciliogenesis is coupled to the abundance and function of mitochondria. Our data further reveal disturbed mitochondrial function as an underlying cause for heterotaxy-linked CHD and provide a mechanism for unexplained phenotypes of mitochondrial disease.


Assuntos
Cílios , DNA Mitocondrial , Genoma Humano , Síndrome de Heterotaxia , Mitocôndrias , Doenças Mitocondriais , Animais , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Feminino , Síndrome de Heterotaxia/genética , Síndrome de Heterotaxia/metabolismo , Síndrome de Heterotaxia/patologia , Humanos , Masculino , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Peixe-Zebra
19.
Am J Hum Genet ; 103(6): 995-1008, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471718

RESUMO

Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located ß-HC DNAH11 (defining ODA type 1), and the distally localized ß-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the ß-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient ß-HCs such as that of the unicellular Chlamydomonas reinhardtii.


Assuntos
Dineínas do Axonema/genética , Cílios/genética , Dineínas/genética , Mutação/genética , Axonema/genética , Transtornos da Motilidade Ciliar/genética , Humanos , Síndrome de Kartagener/genética , Fenótipo
20.
PLoS Genet ; 14(8): e1007602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148830

RESUMO

The clinical spectrum of ciliopathies affecting motile cilia spans impaired mucociliary clearance in the respiratory system, laterality defects including heart malformations, infertility and hydrocephalus. Using linkage analysis and whole exome sequencing, we identified two recessive loss-of-function MNS1 mutations in five individuals from four consanguineous families: 1) a homozygous nonsense mutation p.Arg242* in four males with laterality defects and infertility and 2) a homozygous nonsense mutation p.Gln203* in one female with laterality defects and recurrent respiratory infections additionally carrying homozygous mutations in DNAH5. Consistent with the laterality defects observed in these individuals, we found Mns1 to be expressed in mouse embryonic ventral node. Immunofluorescence analysis further revealed that MNS1 localizes to the axonemes of respiratory cilia as well as sperm flagella in human. In-depth ultrastructural analyses confirmed a subtle outer dynein arm (ODA) defect in the axonemes of respiratory epithelial cells resembling findings reported in Mns1-deficient mice. Ultrastructural analyses in the female carrying combined mutations in MNS1 and DNAH5 indicated a role for MNS1 in the process of ODA docking (ODA-DC) in the distal respiratory axonemes. Furthermore, co-immunoprecipitation and yeast two hybrid analyses demonstrated that MNS1 dimerizes and interacts with the ODA docking complex component CCDC114. Overall, we demonstrate that MNS1 deficiency in humans causes laterality defects (situs inversus) and likely male infertility and that MNS1 plays a role in the ODA-DC assembly.


Assuntos
Códon sem Sentido , Lateralidade Funcional/genética , Homozigoto , Infertilidade Masculina/genética , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Cílios/ultraestrutura , Feminino , Regulação da Expressão Gênica , Ligação Genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Cauda do Espermatozoide , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...