Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(18): 187203, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374676

RESUMO

We report the control of Rashba spin-orbit interaction by tuning asymmetric hybridization between Ti orbitals at the LaAlO_{3}/SrTiO_{3} interface. This asymmetric orbital hybridization is modulated by introducing a LaFeO_{3} layer between LaAlO_{3} and SrTiO_{3}, which alters the Ti-O lattice polarization and traps interfacial charge carriers, resulting in a large Rashba spin-orbit effect at the interface in the absence of an external bias. This observation is verified through high-resolution electron microscopy, magnetotransport and first-principles calculations. Our results open hitherto unexplored avenues of controlling Rashba interaction to design next-generation spin orbitronics.

2.
Nat Commun ; 13(1): 743, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136053

RESUMO

Nickel-based complex oxides have served as a playground for decades in the quest for a copper-oxide analog of the high-temperature superconductivity. They may provide clues towards understanding the mechanism and an alternative route for high-temperature superconductors. The recent discovery of superconductivity in the infinite-layer nickelate thin films has fulfilled this pursuit. However, material synthesis remains challenging, direct demonstration of perfect diamagnetism is still missing, and understanding of the role of the interface and bulk to the superconducting properties is still lacking. Here, we show high-quality Nd0.8Sr0.2NiO2 thin films with different thicknesses and demonstrate the interface and strain effects on the electrical, magnetic and optical properties. Perfect diamagnetism is achieved, confirming the occurrence of superconductivity in the films. Unlike the thick films in which the normal-state Hall-coefficient changes signs as the temperature decreases, the Hall-coefficient of films thinner than 5.5 nm remains negative, suggesting a thickness-driven band structure modification. Moreover, X-ray absorption spectroscopy reveals the Ni-O hybridization nature in doped infinite-layer nickelates, and the hybridization is enhanced as the thickness decreases. Consistent with band structure calculations on the nickelate/SrTiO3 heterostructure, the interface and strain effect induce a dominating electron-like band in the ultrathin film, thus causing the sign-change of the Hall-coefficient.

3.
Phys Rev Lett ; 125(26): 266802, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449729

RESUMO

The persistence of ferroelectricity in ultrathin layers relies critically on screening or compensation of polarization charges which otherwise destabilize the ferroelectric state. At surfaces, charged defects play a crucial role in the screening mechanism triggering novel mixed electrochemical-ferroelectric states. At interfaces, however, the coupling between ferroelectric and electrochemical states has remained unexplored. Here, we make use of the dynamic formation of the oxygen vacancy profile in the nanometer-thick barrier of a ferroelectric tunnel junction to demonstrate the interplay between electrochemical and ferroelectric degrees of freedom at an oxide interface. We fabricate ferroelectric tunnel junctions with a La_{0.7}Sr_{0.3}MnO_{3} bottom electrode and BaTiO_{3} ferroelectric barrier. We use poling strategies to promote the generation and transport of oxygen vacancies at the metallic top electrode. Generated oxygen vacancies control the stability of the ferroelectric polarization and modify its coercive fields. The ferroelectric polarization, in turn, controls the ionization of oxygen vacancies well above the limits of thermodynamic equilibrium, triggering the build up of a Schottky barrier at the interface which can be turned on and off with ferroelectric switching. This interplay between electronic and electrochemical degrees of freedom yields very large values of the electroresistance (more than 10^{6}% at low temperatures) and enables a controlled switching between clockwise and counterclockwise switching modes in the same junction (and consequently, a change of the sign of the electroresistance). The strong coupling found between electrochemical and electronic degrees of freedom sheds light on the growing debate between resistive and ferroelectric switching in ferroelectric tunnel junctions, and moreover, can be the source of novel concepts in memory devices and neuromorphic computing.

4.
Nat Commun ; 9(1): 1897, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765044

RESUMO

Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron-hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron-hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems.

5.
Sci Rep ; 6: 37624, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874069

RESUMO

The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.

6.
Nat Commun ; 7: 13231, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775037

RESUMO

CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies.

7.
Nanotechnology ; 27(15): 155202, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26934391

RESUMO

The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

8.
Sci Rep ; 5: 17229, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673351

RESUMO

The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.

9.
Science ; 348(6234): 547-51, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883317

RESUMO

Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO3 films, mediated by tensile strain on a GdScO3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strain gradients up to 10(9) per meter. Engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.

10.
Nat Commun ; 6: 6306, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686532

RESUMO

At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO(3) (LFO) and ferromagnetic La(0.7)Sr(0.3)MnO(3) (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show that the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.

11.
Nat Commun ; 5: 4215, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24953219

RESUMO

Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

12.
Nat Mater ; 12(5): 397-402, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23416728

RESUMO

The range of recently discovered phenomena in complex oxide heterostructures, made possible owing to advances in fabrication techniques, promise new functionalities and device concepts. One issue that has received attention is the bistable electrical modulation of conductivity in ferroelectric tunnel junctions (FTJs) in response to a ferroelectric polarization of the tunnelling barrier, a phenomenon known as the tunnelling electroresistance (TER) effect. Ferroelectric tunnel junctions with ferromagnetic electrodes allow ferroelectric control of the tunnelling spin polarization through the magnetoelectric coupling at the ferromagnet/ferroelectric interface. Here we demonstrate a significant enhancement of TER due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Ferroelectric tunnel junctions consisting of BaTiO3 tunnelling barriers and La(0.7)Sr(0.3)MnO3 electrodes exhibit a TER enhanced by up to ~10,000% by a nanometre-thick La(0.5)Ca(0.5)MnO3 interlayer inserted at one of the interfaces. The observed phenomenon originates from the metal-to-insulator phase transition in La(0.5)Ca(0.5)MnO3, driven by the modulation of carrier density through ferroelectric polarization switching. Electrical, ferroelectric and magnetoresistive measurements combined with first-principles calculations provide evidence for a magnetoelectric origin of the enhanced TER, and indicate the presence of defect-mediated conduction in the FTJs. The effect is robust and may serve as a viable route for electronic and spintronic applications.

13.
Ultramicroscopy ; 127: 109-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22940531

RESUMO

An unusual conducting surface state can be produced in SrTiO3 substrates by irradiation with Argon ions from a plasma source, at low energy and high doses. The effects of irradiation are analyzed here by atomic force microscopy (AFM) and aberration corrected scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS). Depth sensitive studies demonstrate the existence of a heavily damaged surface layer and an oxygen vacancy rich layer immediately underneath, both induced during the irradiation process. We find a clear dependence of the Ti oxidation state with the depth, with a very intense Ti(3+) component near the surface. Oxygen vacancies act as n-type doping by releasing electrons into the lattice and producing an insulator-to-metal transition, which explains the unusual metallic behavior of these samples.

14.
J Phys Condens Matter ; 24(39): 395005, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22941905

RESUMO

We show that pure rutile TiO(2) can be photo-responsive even under low energy visible light after annealing in vacuum where we envisage that the point defects, i.e. oxygen vacancies and titanium interstitials, serve an important role. In this study, single crystal rutile films were grown by the pulsed laser deposition technique and then vacuum annealed under different oxygen pressures to introduce defects into their lattices. 4-chlorophenol was selected as a model material and decomposed by the annealed TiO(2) films where the maximum photocatalytic reaction rate constants were determined as 0.0107 and 0.0072 min(-1) under UV and visible illumination. Epitaxial growth along the [200] direction was confirmed by φ-scan and 2θ-scan XRD and the epitaxial relationship between the rutile film and the c-sapphire substrate was explained as (100)[010](R) [parallel] (0001)[12[combining overline]10](S). The formation of atomically sharp interfaces and the epitaxial growth were ascertained by annular dark-field STEM imaging. Based on the XPS, UV-vis and PL spectroscopy results, it was found that the defect concentration increased after annealing under lower pressures, e.g. 5 × 10(-6) Torr. In contrast, more perfect crystals were obtained when the films were annealed under high oxygen pressures, namely 5 × 10(1) Torr. The morphology of the films was also investigated by employing an AFM technique. It was observed that increase of the annealing pressure results in the formation of larger grains. It was also found that the electrical resistivity of the rutile films strongly increased by about three orders of magnitude when the annealing pressure increased from 5 × 10(-4) to 5 × 10(1) Torr.


Assuntos
Clorofenóis/química , Processos Fotoquímicos , Titânio/química , Raios Ultravioleta , Catálise , Oxigênio/química , Pressão , Vácuo , Difração de Raios X
15.
Ultramicroscopy ; 123: 28-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22727567

RESUMO

This review covers the development of scanning transmission electron microscopy from the innovations of Albert Crewe to the two-dimensional spectrum imaging in the era of aberration correction. It traces the key events along the path, the first atomic resolution Z-contrast imaging of individual atoms, the realization of incoherent imaging in crystals and the role of dynamical diffraction, simultaneous, atomic resolution electron energy loss spectroscopy, and finally the tremendous impact of the successful correction of lens aberrations, not just in terms of resolution but also in single atom sensitivity.


Assuntos
Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Transmissão e Varredura/tendências , Microscopia Eletrônica de Transmissão e Varredura/métodos , Espectroscopia de Perda de Energia de Elétrons/instrumentação , Espectroscopia de Perda de Energia de Elétrons/métodos , Espectroscopia de Perda de Energia de Elétrons/tendências
16.
Proc Natl Acad Sci U S A ; 109(25): 9710-5, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22647612

RESUMO

The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon.

17.
Nanotechnology ; 23(27): 275604, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22710488

RESUMO

We demonstrate a promising synthesis route based on pulsed laser dewetting of bilayer films (Ag and Co) to make bimetallic nanoparticle arrays. By combining experiment and theory we establish a parameter space for the independent control of composition and diameter for the bimetallic nanoparticles. As a result, physical properties, such as the localized surface plasmon resonance (LSPR), that depend on particle size and composition can be readily tuned over a wavelength range one order of magnitude greater than for pure Ag nanoparticles. The LSPR detection sensitivity of the bimetallic nanoparticles with narrow size distribution was found to be high-comparable with pure Ag (∼60 nm/RIU). Moreover, they showed significantly higher long-term environmental stability over pure Ag.


Assuntos
Ligas/química , Cobalto/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Ecossistema , Teste de Materiais , Tamanho da Partícula
18.
Nat Commun ; 3: 799, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531184

RESUMO

Electrochromes are materials that have the ability to reversibly change from one colour state to another with the application of an electric field. Electrochromic colouration efficiency is typically large in organic materials that are not very stable chemically. Here we show that inorganic Bi(0.9)Ca(0.1)FeO(3-0.05) thin films exhibit a prominent electrochromic effect arising from an intrinsic mechanism due to the melting of oxygen-vacancy ordering and the associated redistribution of carriers. We use a combination of optical characterization techniques in conjunction with high-resolution transmission electron microscopy and first-principles theory. The absorption change and colouration efficiency at the band edge (blue-cyan region) are 4.8×10(6) m(-1) and 190 cm(2) C(-1), respectively, which are the highest reported values for inorganic electrochromes, even exceeding values of some organic materials.

19.
Phys Rev Lett ; 109(24): 246101, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368348

RESUMO

Aberration-corrected scanning transmission electron microscopy yields probe-position-dependent energy-loss near-edge structure (ELNES) measurements, potentially providing spatial mapping of the underlying electronic states. ELNES calculations, however, typically describe excitations by a plane wave traveling in vacuum, neglecting the interaction of the electron probe with the local electronic environment as it propagates through the specimen. Here, we report a methodology that combines a full electronic-structure calculation with propagation of a focused beam in a thin film. The results demonstrate that only a detailed calculation using this approach can provide quantitative agreement with observed variations in probe-position-dependent ELNES.

20.
J Electron Microsc (Tokyo) ; 60 Suppl 1: S213-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21844591

RESUMO

The successful correction of third-order and, more recently, fifth-order aberrations has enormously enhanced the capabilities of the scanning transmission electron microscope (STEM), by not only achieving record resolution, but also allowing near 100% efficiency for electron energy loss spectroscopy, and higher currents for two-dimensional spectrum imaging. These advances have meant that the intrinsic advantages of the STEM, incoherent imaging and simultaneous collection of multiple complementary images can now give new insights into many areas of materials physics. Here, we review a number of examples, mostly from the field of complex oxides, and look towards new directions for the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...