Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plankton Res ; 46(1): 25-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486837

RESUMO

Copepod size and energy content are influenced by regional and seasonal variation in temperature and food conditions, with implications for planktivorous consumers such as the endangered North Atlantic right whale (Eubalaena glacialis). Historical data (1990-2020) on Calanus finmarchicus stage CV copepodite prosome length and oil sac metrics were analyzed to determine the extent of variation in individual body size and estimated lipid and energy content in five regions of the Northwest Atlantic continental shelves [Gulf of Maine (GoM), Scotian Shelf (SS), Gulf of St. Lawrence (GSL), St. Lawrence Estuary (SLE) and Newfoundland Shelf]. Large-scale spatial patterns in size and lipid content were related to latitude, indicating that C. finmarchicus CV in the GSL and SLE were historically larger in body size, and had significantly higher lipid content compared with those in the GoM and the SS. The observed patterns of C. finmarchicus CV size and lipid storage capacity suggest that regional variation in whale prey energy content can play a role in the suitability of current and future whale foraging habitats in the Northwest Atlantic, with the larger lipid-rich individuals in the GSL providing a high-quality diet compared with those in southern areas.

2.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497774

RESUMO

Species with a wide distribution can experience significant regional variation in environmental conditions, to which they can acclimatize or adapt. Consequently, the geographic origin of an organism can influence its responses to environmental changes, and therefore its sensitivity to combined global change drivers. This study aimed at determining the physiological responses of the northern shrimp, Pandalus borealis, at different levels of biological organization and from four different geographic origins, exposed to elevated temperature and low pH to define its sensitivity to future ocean warming and acidification. Shrimp sampled within the northwest Atlantic were exposed for 30 days to combinations of three temperature (2, 6 or 10°C) and two pH levels (7.75 or 7.40). Survival, metabolic rates, whole-organism aerobic performance and cellular energetic capacity were assessed at the end of the exposure. Our results show that shrimp survival was negatively affected by temperature above 6°C and low pH, regardless of their origin. Additionally, shrimp from different origins show overall similar whole-organism performances: aerobic scope increasing with increasing temperature and decreasing with decreasing pH. Finally, the stability of aerobic metabolism appears to be related to cellular adjustments specific to shrimp origin. Our results show that the level of intraspecific variation differs among levels of biological organization: different cellular capacities lead to similar individual performances. Thus, the sensitivity of the northern shrimp to ocean warming and acidification is overall comparable among origins. Nonetheless, shrimp vulnerability to predicted global change scenarios for 2100 could differ among origins owing to different regional environmental conditions.


Assuntos
Crustáceos , Água do Mar , Animais , Temperatura , Concentração de Íons de Hidrogênio , Água do Mar/química , Oceanos e Mares , Aquecimento Global
3.
Nat Commun ; 11(1): 2691, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483136

RESUMO

Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO2 (pCO2) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere. Along the Pacific coast, upwelling brings subsurface waters with low Ω and pH to the surface where net biological production works to raise their values. Different temperature sensitivities of carbonate properties and different timescales of influencing processes lead to contrasting property distributions within and among margins.

4.
R Soc Open Sci ; 4(7): 170215, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791149

RESUMO

The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems.

5.
PLoS One ; 9(2): e87589, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503909

RESUMO

The Northwest Atlantic marine ecosystem off Newfoundland and Labrador, Canada, has been commercially exploited for centuries. Although periodic declines in various important commercial fish stocks have been observed in this ecosystem, the most drastic changes took place in the early 1990s when the ecosystem structure changed abruptly and has not returned to its previous configuration. In the Northwest Atlantic, food web dynamics are determined largely by capelin (Mallotus villosus), the focal forage species which links primary and secondary producers with the higher trophic levels. Notwithstanding the importance of capelin, the factors that influence its population dynamics have remained elusive. We found that a regime shift and ocean climate, acting via food availability, have discernible impacts on the regulation of this population. Capelin biomass and timing of spawning were well explained by a regime shift and seasonal sea ice dynamics, a key determinant of the pelagic spring bloom. Our findings are important for the development of ecosystem approaches to fisheries management and raise questions on the potential impacts of climate change on the structure and productivity of this marine ecosystem.


Assuntos
Ecossistema , Osmeriformes/fisiologia , Comportamento Predatório/fisiologia , Animais , Biomassa , Clima , Geografia , Camada de Gelo , Terra Nova e Labrador , Reprodução
6.
Oecologia ; 166(2): 357-68, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21170750

RESUMO

During the last 20 years, ecologists discovered the importance of including spatial relationships in models of species distributions. Among the latest developments in modelling how species are spatially structured are eigenfunction-based spatial filtering methods such as Moran's eigenvector maps (MEM) and principal coordinates of neighbour matrices (PCNM). Although these methods are very powerful and flexible, they are only suited to study distributions resulting from non-directional spatial processes. The asymmetric eigenvector map (AEM) framework, a new eigenfunction-based spatial filtering method, fills this theoretical gap. AEM was specifically designed to model spatial structures hypothesized to be produced by directional spatial processes. Water currents, prevailing wind on mountainsides, river networks, and glaciations at historical time scales are some of the situations where AEM can be used. This paper presents three applications of the method illustrating different combinations of: sampling schemes (regular and irregular), data types (univariate and multivariate), and spatial scales (metres, kilometres, and hundreds of kilometres). The applications include the distribution of a crustacean (Atya) in a river, bacterial production in a lake, and the distribution of the copepodite stages of a crustacean on the Atlantic oceanic shelf. In each application, a comparison is made between AEM, MEM, and PCNM. No environmental components were included in the comparisons. AEM was a strong predictor in all cases, explaining 59.8% for Atya distribution, 51.4% of the bacterial production variation, and 38.4% for the copepodite distributions. AEM outperformed MEM and PCNM in these applications, offering a powerful and more appropriate tool for spatial modelling of species distributions under directional forcing and leading to a better understanding of the processes at work in these systems.


Assuntos
Copépodes/fisiologia , Decápodes/fisiologia , Modelos Biológicos , Microbiologia da Água , Animais , Oceano Atlântico , Biodiversidade , Guadalupe , Terra Nova e Labrador , Densidade Demográfica , Quebeque , Rios , Movimentos da Água
7.
PLoS One ; 5(8): e12182, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20824204

RESUMO

Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage.


Assuntos
Biodiversidade , Animais , Canadá , Classificação , Oceanos e Mares
8.
Genome ; 49(9): 1115-30, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17110992

RESUMO

Phylogenetic analysis of 13 substantially complete mitochondrial DNA genome sequences (14,036 bp) from 10 taxa of gadine codfishes and pollock provides highly corroborated resolution of outstanding questions on their biogeographic evolution. Of 6 resolvable nodes among species, 4 were supported by >95% of bootstrap replications in parsimony, distance, likelihood, and similarly high posterior probabilities in bayesian analyses, one by 85%-95% according to the method of analysis, and one by 99% by one method and a majority of the other two. The endemic Pacific species, walleye pollock (Theragra chalcogramma), is more closely related to the endemic Atlantic species, Atlantic cod (Gadus macrocephalus), than either is to a second Pacific endemic, Pacific cod (Gadus macrocephalus). The walleye pollock should thus be referred to the genus Gadus as originally described (Gadus chalcogrammus Pallas 1811). Arcto-Atlantic Greenland cod, previously regarded as a distinct species (G. ogac), are a genomically distinguishable subspecies within pan-Pacific G. macrocephalus. Of the 2 endemic Arctic Ocean genera, Polar cod (Boreogadus) as the outgroup to Arctic cod (Arctogadus) and Gadus sensu lato is more strongly supported than a pairing of Boreogadus and Arctogadus as sister taxa. Taking into consideration historical patterns of hydrogeography, we outline a hypothesis of the origin of the 2 endemic Pacific species as independent but simultaneous invasions through the Bering Strait from an Arcto-Atlantic ancestral lineage. In contrast to the genome data, the complete proteome sequence (3830 amino acids) resolved only 3 nodes with >95% confidence, and placed Alaska pollock outside the Gadus clade owing to reversal mutations in the ND5 locus that restore ancestral, non-Gadus, amino acid residues in that species.


Assuntos
DNA Mitocondrial/genética , Gadiformes/classificação , Gadiformes/genética , Filogenia , Sequência de Aminoácidos , Animais , Sequência de Bases , Genômica , Geografia , Dados de Sequência Molecular , Oceanos e Mares , Proteômica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...