Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 826158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242155

RESUMO

Riparian ecosystems, in long-time developed regions, are among the most heavily impacted by human activities; therefore, the distribution of tree riparian species, such as Ulmus laevis, is highly affected. This phenomenon is particularly relevant at the margins of the natural habitat of the species, where populations are small and rare. In these cases, it is difficult to distinguish between relics or introductions, but it is relevant for the restoration of natural habitats and conservation strategies. The aim of this study was to study the phylogeography of the southern distribution of the species. We sequenced the entire chloroplast (cp) genomes of 54 individuals from five sampled populations across different European regions to highlight polymorphisms and analyze their distribution. Thirty-two haplotypes were identified. All the sampled populations showed private haplotypes that can be considered an indicator of long-term residency, given the low mutation rate of organellar DNA. The network of all haplotypes showed a star-like topology, and Serbian haplotypes were present in all branches. The Balkan population showed the highest level of nucleotide and genetic diversity. Low genetic differentiation between populations was observed but we found a significant differentiation among Serbia vs. other provenances. Our estimates of divergent time of U. laevis samples highlight the early split of above all Serbian individuals from other populations, emphasizing the reservoir role of white elm genetic diversity of Serbian population.

2.
Microb Ecol ; 75(3): 632-646, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28875260

RESUMO

In Europe as in North America, elms are devastated by Dutch elm disease (DED), caused by the alien ascomycete Ophiostoma novo-ulmi. Pathogen dispersal and transmission are ensured by local species of bark beetles, which established a novel association with the fungus. Elm bark beetles also transport the Geosmithia fungi genus that is found in scolytids' galleries colonized by O. novo-ulmi. Widespread horizontal gene transfer between O. novo-ulmi and Geosmithia was recently observed. In order to define the relation between these two fungi in the DED pathosystem, O. novo-ulmi and Geosmithia species from elm, including a GFP-tagged strain, were grown in dual culture and mycelial interactions were observed by light and fluorescence microscopy. Growth and sporulation of O. novo-ulmi in the absence or presence of Geosmithia were compared. The impact of Geosmithia on DED severity was tested in vivo by co-inoculating Geosmithia and O. novo-ulmi in elms. A close and stable relation was observed between the two fungi, which may be classified as mycoparasitism by Geosmithia on O. novo-ulmi. These results prove the existence of a new component in the complex of organisms involved in DED, which might be capable of reducing the disease impact.


Assuntos
Hypocreales/fisiologia , Interações Microbianas/fisiologia , Ophiostoma/fisiologia , Ulmus/microbiologia , Animais , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/fisiologia , Agentes de Controle Biológico , Besouros/microbiologia , DNA Fúngico/genética , Proteínas Fúngicas/genética , Transferência Genética Horizontal , Genes Fúngicos/genética , Hifas , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Interações Microbianas/genética , Ophiostoma/genética , Ophiostoma/crescimento & desenvolvimento , Ophiostoma/patogenicidade , Doenças das Plantas/microbiologia
3.
Microb Ecol ; 76(1): 298, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29218373

RESUMO

The article Geosmithia-Ophiostoma: a New Fungus-Fungus Association, written by Alessia L. Pepori, Priscilla P. Bettini, Cecilia Comparini, Sabrina Sarrocco, Anna Bonini, Arcangela Frascella, Luisa Ghelardini, & Aniello Scala, Giovanni Vannacci, Alberto Santini.

4.
Fungal Biol ; 119(11): 1063-1074, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466880

RESUMO

Species of the genus Geosmithia are associated with insect species, mainly bark beetles. On Ulmus spp., the same beetles are also vectors of Ophiostoma ulmi s.l., the agent of Dutch elm disease (DED), a worldwide elm disease. Aim of this paper is to characterise Geosmithia species associated with elms and/or elm beetles in Europe. Seventy-two strains representative of all morphological taxonomic units were used to build a phylogenetic tree based on ITS, ß-tubulin and elongation factor 1-α gene regions. On the basis of molecular and morpho-physiological traits, seven taxonomic entities were identified. In addition to the species previously known our results assigned strains previously identified as Geosmithia pallida to two separate taxa: Geosmithia sp. 2 and Geosmithia sp. 5. Two new species, Geosmithia omnicola and Geosmithia ulmacea, are described. Two strains were assigned to the partially described species Geosmithia sp. 20. Geosmithia species living on Ulmus do not discriminate between elm species, but between different environments. The association between Ulmus and Geosmithia is common, stable, and seems to be related to specific vectors. The relationship between Geosmithia and Ophiostoma would deserve further investigation, as these fungi share the same vectors and habitat for a significant part of their life cycles.


Assuntos
Besouros/microbiologia , Variação Genética , Hypocreales/classificação , Hypocreales/isolamento & purificação , Ulmus/microbiologia , Animais , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Europa (Continente) , Hypocreales/citologia , Hypocreales/genética , Microscopia , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Análise de Sequência de DNA , Tubulina (Proteína)/genética
5.
Fungal Biol ; 118(8): 663-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25110129

RESUMO

Previous work had shown that a sequence homologous to the gene encoding class II hydrophobin cerato-ulmin from the fungus Ophiostoma novo-ulmi, the causal agent of Dutch Elm Disease (DED), was present in a strain of the unrelated species Geosmithia species 5 (Ascomycota: Hypocreales) isolated from Ulmus minor affected by DED. As both fungi occupy the same habitat, even if different ecological niches, the occurrence of horizontal gene transfer was proposed. In the present work we have analysed for the presence of the cerato-ulmin gene 70 Geosmithia strains representing 29 species, isolated from different host plants and geographic locations. The gene was found in 52.1 % of the strains derived from elm trees, while none of those isolated from nonelms possessed it. The expression of the gene in Geosmithia was also assessed by real time PCR in different growth conditions (liquid culture, solid culture, elm sawdust, dual culture with O. novo-ulmi), and was found to be extremely low in all conditions tested. On the basis of these results we propose that the cerato-ulmin gene is not functional in Geosmithia, but can be considered instead a marker of more extensive transfers of genetic material as shown in other fungi.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Transferência Genética Horizontal , Micotoxinas/genética , Ascomicetos/isolamento & purificação , Perfilação da Expressão Gênica , Genes Fúngicos , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Ulmus/microbiologia
6.
Can J Microbiol ; 58(8): 965-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22803587

RESUMO

In the present paper we describe a new noncatalytic protein belonging to the hydrophobin family, designated GEO1, purified from the culture filtrate of Geosmithia pallida (Ascomycota: Hypocreales), and the corresponding gene sequence. In the fungal genome, GEO1 was encoded by a single-copy gene with a 450 bp open reading frame interrupted by 2 small introns whose primary translation product was 109 amino acids long and included a 23 amino acids signal peptide. The mature protein had a molecular mass of 8111.75 Da and a theoretical pI of 4.33. The deduced amino acid sequence showed similarity to class II hydrophobins and contained 8 conserved cysteine residues, present in all hydrophobins isolated so far. Biochemical properties, such as foam-forming ability and trapezoid-like shape of a GEO1 drop, also resembled the typical features of the class II hydrophobins. Expression of the geo1 gene was assessed after 2, 4, 7, 9, and 11 days of culture and showed that the geo1 transcript appeared after 7 days and increased up to 11 days.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...