Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1194803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362447

RESUMO

Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1ß, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI.

2.
Am J Physiol Renal Physiol ; 325(1): F38-F49, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102686

RESUMO

The presence of a renal GABA/glutamate system has previously been described; however, its functional significance in the kidney remains undefined. We hypothesized, given its extensive presence in the kidney, that activation of this GABA/glutamate system would elicit a vasoactive response from the renal microvessels. The functional data here demonstrate, for the first time, that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter with important implications for influencing renal blood flow. Renal blood flow is regulated in both the renal cortical and medullary microcirculatory beds via diverse signaling pathways. GABA- and glutamate-mediated effects on renal capillaries are strikingly similar to those central to the regulation of central nervous system capillaries, that is, exposing renal tissue to physiological concentrations of GABA, glutamate, and glycine led to alterations in the way that contractile cells, pericytes, and smooth muscle cells, regulate microvessel diameter in the kidney. Since dysregulated renal blood flow is linked to chronic renal disease, alterations in the renal GABA/glutamate system, possibly through prescription drugs, could significantly impact long-term kidney function.NEW & NOTEWORTHY Functional data here offer novel insight into the vasoactive activity of the renal GABA/glutamate system. These data show that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter. Furthermore, the results show that these antiepileptic drugs are as potentially challenging to the kidney as nonsteroidal anti-inflammatory drugs.


Assuntos
Ácido Glutâmico , Glicina , Ácido Glutâmico/farmacologia , Microcirculação , Glicina/farmacologia , Rim/irrigação sanguínea , Ácido gama-Aminobutírico/farmacologia , Sistema Nervoso Central , Neurotransmissores/farmacologia
3.
Am J Physiol Renal Physiol ; 311(4): F805-F816, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27358056

RESUMO

Overactive Bladder (OAB) is an idiopathic condition, characterized by urgency, urinary frequency, and urgency incontinence, in the absence of routinely traceable urinary infection. We have described microscopic pyuria (≥10 wbc/µl) in patients suffering from the worst symptoms. It is established that inflammation is associated with increased ATP release from epithelial cells, and extracellular ATP originating from the urothelium following increased hydrostatic pressure is a mediator of bladder sensation. Here, using bladder biopsy samples, we have investigated urothelial ATP signaling in OAB patients with microscopic pyuria. Basal, but not stretch-evoked, release of ATP was significantly greater from the urothelium of OAB patients with pyuria than from non-OAB patients or OAB patients without pyuria (<10 wbc/µl). Basal ATP release from the urothelium of OAB patients with pyuria was inhibited by the P2 receptor antagonist suramin and abolished by the hemichannel blocker carbenoxolone, which differed from stretch-activated ATP release. Altered P2 receptor expression was evident in the urothelium from pyuric OAB patients. Furthermore, intracellular bacteria were visualized in shed urothelial cells from ∼80% of OAB patients with pyuria. These data suggest that increased ATP release from the urothelium, involving bacterial colonization, may play a role in the heightened symptoms associated with pyuric OAB patients.


Assuntos
Trifosfato de Adenosina/metabolismo , Piúria/metabolismo , Transdução de Sinais/fisiologia , Bexiga Urinária Hiperativa/metabolismo , Urotélio/metabolismo , Carbenoxolona/farmacologia , Feminino , Humanos , Masculino , Antagonistas do Receptor Purinérgico P2/farmacologia , Piúria/complicações , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologia , Uridina Trifosfato/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/complicações , Urotélio/efeitos dos fármacos
4.
J Am Soc Nephrol ; 27(12): 3639-3652, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27026366

RESUMO

The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.


Assuntos
Nefropatias/etiologia , Rim/patologia , Miofibroblastos/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais , Fatores de Necrose Tumoral/fisiologia , Animais , Citocina TWEAK , Progressão da Doença , Fibrose/etiologia , Camundongos , Receptor de TWEAK
5.
Am J Physiol Renal Physiol ; 309(7): F648-57, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26202223

RESUMO

We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Capilares/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Animais , Bradicinina/farmacologia , Interações Medicamentosas , Técnicas In Vitro , Túbulos Renais/irrigação sanguínea , Túbulos Renais/efeitos dos fármacos , Masculino , Óxido Nítrico/farmacologia , Prostaglandinas/farmacologia , Ratos , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
6.
Springerplus ; 3: 200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24839587

RESUMO

Renal transplant recipients (RTR) are highly susceptible to urinary tract infections (UTIs) with over 50% of patients having at least one UTI within the first year. Yet it is generally acknowledged that there is considerable insensitivity and inaccuracy in routine urinalysis when screening for UTIs. Thus a large number of transplant patients with genuine urine infections may go undiagnosed and develop chronic recalcitrant infections, which can be associated with graft loss and morbidity. Given a recent study demonstrating ATP is released by urothelial cells in response to bacteria exposure, possibly acting at metabotropic P2Y receptors mediating a proinflammatory response, we have investigated alternative, and possibly more appropriate, urinalysis techniques in a cohort of RTRs. Mid-stream urine (MSU) samples were collected from 53 outpatient RTRs. Conventional leukocyte esterase and nitrite dipstick tests, and microscopic pyuria counts (in 1 µl), ATP concentration measurements, and identification of intracellular bacteria in shed urothelial cells, were performed on fresh unspun samples and compared to 'gold-standard' bacterial culture results. Of the 53 RTRs, 22% were deemed to have a UTI by 'gold-standard' conventional bacteria culture, whereas 87%, 8% and 4% showed evidence of UTIs according to leukocyte esterase dipstick, nitrite dipstick, and a combination of both dipsticks, respectively. Intracellular bacteria were visualized in shed urothelial cells of 44% of RTRs, however only 1 of the 23 RTRs (44%) was deemed to have a UTI by conventional bacteria culture. A significant association of the 'gold-standard' test with urinary ATP concentration combined with visualization of intracellular bacteria in shed urothelial cells was determined using the Fisher's exact test. It is apparent that standard bedside tests for UTIs give variable results and that seemingly quiescent bacteria in urothelial cells are very common in RTRs and may represent a focus of subclinical infection. Furthermore, our results suggest urinary ATP concentration combined with detection of intracellular bacteria in shed urinary epithelial cells may be a sensitive means by which to detect 'occult' infection in RTRs.

7.
Eur J Pharmacol ; 702(1-3): 242-9, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23370179

RESUMO

The functional distribution of ATP-activated P2 receptors is well characterized for many blood vessels, but not in the equine digital vasculature, which is a superficial vascular bed that displays thermoregulatory functions and has been implicated in ischemia-reperfusion injuries of the hoof. Isolated equine digital arteries (EDA) and veins (EDV) were submitted to isometric tension studies, whereby electric field stimulation (EFS) and concentration-response curves to exogenously applied agonists were constructed under low tone conditions. Additionally, immunofluorescent localization of P2X and P2Y receptor subtypes was performed. EFS-induced constriction was abolished by tetrodotoxin (1 µM, n=4). Endothelium denudation did not modify the EFS-induced constriction (n=3). The EFS-induced constriction in EDA was inhibited by phentolamine (67.7±1.8%, n=6; 10 µM), and by the non-selective P2 receptor antagonist suramin (46.2±1.3%, n=6; 10 µM). EFS-induced constriction in EDV was reduced by suramin (48.2±2.4%, n=6; 10 µM), the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (58.3±4.5%, n=6; 10 µM), and phentolamine (23.2±2.5%, n=6; 10 µM). Exogenous methoxamine and ATP mimicked EFS-induced constriction in EDA and EDV. Immunostaining for P2X1, P2X2 and P2X3, and, for P2X1 and P2X7 receptor subunits were observed in EDA and EDV smooth muscle and adventitia, respectively. ATP and noradrenaline are co-transmitters in sympathetic nerves supplying the equine digital vasculature, noradrenaline being the dominant agonist in EDA, and ATP in EDV. In conclusion, P2X receptors mediate vasoconstriction in EDA and EDV, although different P2X subunits are involved in these vessels. The physiological significance of this finding in relation to thermoregulatory functions and equine laminitis is discussed.


Assuntos
Trifosfato de Adenosina/farmacologia , Artérias/efeitos dos fármacos , Receptores Purinérgicos P2X/fisiologia , Veias/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Animais , Artérias/fisiologia , Estimulação Elétrica , Feminino , Cavalos , Técnicas In Vitro , Masculino , Metoxamina/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptores Purinérgicos P2/fisiologia , Suramina/farmacologia , Uridina Trifosfato/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia , Veias/fisiologia
8.
Curr Opin Nephrol Hypertens ; 22(1): 10-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23165111

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to focus on the most recent developments in our understanding of the physiological and pathophysiological role(s) that renal pericytes play in the kidney. We will highlight the most important and interesting advances made in the last 12 months and aim to provide a concise summary of the exciting progress in this field. RECENT FINDINGS: Pericytes have increasingly been the subject of much interest in the renal field, with particular attention focusing on their key role as regulators of medullary blood flow (MBF), their ability to coordinate tubular and vascular function via tubulovascular cross-talk mechanisms, and most recently, their role in the pathogenesis of renal diseases such as fibrosis and associated forms of chronic disease. SUMMARY: Pericyte-mediated regulation of vasa recta diameter provides compelling evidence to support regulated MBF, a notoriously controversial subject. Coordination of tubular and vascular function by pericytes, particularly in salt-sensitive animal models, provides important mechanistic information regarding the physiological workings of the medulla in health and renal disease. Moreover, the emergent role of renal pericytes in vessel rarefication during fibrosis promises to reveal novel therapeutic targets to counteract devascularization, disease progression and loss of kidney function.


Assuntos
Nefropatias/fisiopatologia , Medula Renal/irrigação sanguínea , Pericitos/fisiologia , Circulação Renal , Animais , Fibrose/etiologia , Humanos , Hipertensão/etiologia , Neovascularização Patológica/etiologia , Pericitos/citologia , Transdução de Sinais
9.
Purinergic Signal ; 8(4): 741-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22707011

RESUMO

Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ≥ 98 %). All samples were analyzed following injection (100 µl) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 µm, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Nucleosídeos/urina , Nucleotídeos/urina , Animais , Humanos , Íons/análise , Camundongos , Sensibilidade e Especificidade , Extração em Fase Sólida/métodos
10.
J Am Soc Nephrol ; 22(7): 1297-304, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21719788

RESUMO

Translating discoveries made in isolated renal cells and tubules to the in vivo situation requires the assessment of cellular function in intact live organs. Multiphoton imaging is a form of fluorescence microscopy that is ideally suited to working with whole tissues and organs, but adequately loading cells with fluorescence dyes in vivo remains a challenge. We found that recirculation of fluorescence dyes in the rat isolated perfused kidney (IPK) resulted in levels of intracellular loading that would be difficult to achieve in vivo. This technique allowed the imaging of tubular cell structure and function with multiphoton microscopy in an intact, functioning organ. We used this approach to follow processes in real time, including (1) relative rates of reactive oxygen species (ROS) production in different tubule types, (2) filtration and tubular uptake of low-molecular-weight dextrans and proteins, and (3) the effects of ischemia-reperfusion injury on mitochondrial function and cell structure. This study demonstrates that multiphoton microscopy of the isolated perfused kidney is a powerful technique for detailed imaging of cell structure and function in an intact organ.


Assuntos
Rim/anatomia & histologia , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Corantes Fluorescentes , Técnicas In Vitro , Isquemia/fisiopatologia , Rim/fisiologia , Masculino , Mitocôndrias/fisiologia , NAD/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reperfusão
11.
J Cereb Blood Flow Metab ; 30(2): 403-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19888288

RESUMO

The brain's energy supply determines its information processing power, and generates functional imaging signals, which are often assumed to reflect principal neuron spiking. Using measured cellular properties, we analysed how energy expenditure relates to neural computation in the cerebellar cortex. Most energy is used on information processing by non-principal neurons: Purkinje cells use only 18% of the signalling energy. Excitatory neurons use 73% and inhibitory neurons 27% of the energy. Despite markedly different computational architectures, the granular and molecular layers consume approximately the same energy. The blood vessel area supplying glucose and O(2) is spatially matched to energy consumption. The energy cost of storing motor information in the cerebellum was also estimated.


Assuntos
Cerebelo/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ratos
12.
J Am Soc Nephrol ; 20(7): 1480-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19423692

RESUMO

Vasopressin regulates water reabsorption in the collecting duct, but extracellular nucleotides modulate this regulation through incompletely understood mechanisms. We investigated these mechanisms using immortalized mouse collecting duct (mpkCCD) cells. Basolateral exposure to dDAVP induced AQP2 localization to the apical membrane, but co-treatment with ATP internalized AQP2. Because plasma membrane-bound P2 receptors (P2R) mediate the effects of extracellular nucleotides, we examined the abundance and localization of P2R in mpkCCD cells. In the absence of dDAVP, P2Y(1) and P2Y(4) receptors localized to the apical membrane, whereas P2X(2), P2X(4), P2X(5), P2X(7), P2Y(2), P2Y(11), and P2Y(12) receptors localized to the cytoplasm. dDAVP induced gene expression of P2X(1), which localized to the apical domain, and led to translocation of P2X(2) and P2Y(2) to the apical and basolateral membranes, respectively. In co-expression experiments, P2R activation decreased membrane AQP2 and AQP2-mediated water permeability in Xenopus oocytes expressing P2X(2), P2Y(2,) or P2Y(4) receptors, but not in oocytes expressing other P2R subtypes. In summary, these data suggest that AQP2-mediated water transport is downregulated not only by basolateral nucleotides, mediated by P2Y(2) receptors, but also by luminal nucleotides, mediated by P2X(2) and/or P2Y(4) receptors.


Assuntos
Aquaporina 2/metabolismo , Túbulos Renais Coletores/metabolismo , Nucleotídeos/fisiologia , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aquaporina 2/genética , Arginina Vasopressina , Linhagem Celular , Regulação para Baixo , Feminino , Túbulos Renais Coletores/citologia , Camundongos , Modelos Animais , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores Purinérgicos P2X , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2Y2 , Xenopus laevis
13.
J Am Soc Nephrol ; 19(4): 731-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18235098

RESUMO

The epithelial sodium channel (ENaC) plays a major role in the regulation of sodium balance and BP by controlling Na(+) reabsorption along the renal distal tubule and collecting duct (CD). ENaC activity is affected by extracellular nucleotides acting on P2 receptors (P2R); however, there remain uncertainties over the P2R subtype(s) involved, the molecular mechanism(s) responsible, and their physiologic role. This study investigated the relationship between apical P2R and ENaC activity by assessing the effects of P2R agonists on amiloride-sensitive current in the rat CD. Using whole-cell patch clamp of principal cells of split-open CD from Na(+)-restricted rats, in combination with immunohistochemistry and real-time PCR, we found that activation of metabotropic P2R (most likely the P2Y(2) and/or (4) subtype), via phospholipase C, inhibited ENaC activity. In addition, activation of ionotropic P2R (most likely the P2X(4) and/or (4/6) subtype), via phosphatidylinositol-3 kinase, either inhibited or potentiated ENaC activity, depending on the extracellular Na(+) concentration; therefore, it is proposed that P2X(4) and/or (4/6) receptors might function as apical Na(+) sensors responsible for local regulation of ENaC activity in the CD and could thereby help to regulate Na(+) balance and systemic BP.


Assuntos
Amilorida/farmacologia , Canais Epiteliais de Sódio/fisiologia , Receptores Purinérgicos P2/fisiologia , Animais , Túbulos Renais Coletores/fisiologia , Ratos , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...