Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5380-5396, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439266

RESUMO

We present the development of a transportable laser frequency stabilization system with application to both optical clocks and a next-generation gravity mission (NGGM) in space. This effort leverages a 5-cm long cubic cavity with crystalline coatings operating at room temperature and with a center wavelength of 1064 nm. The cavity is integrated in a custom vacuum chamber with dedicated low-noise locking electronics. Our vacuum-mounted cavity and control system are well suited for space applications, exhibiting state-of-the-art noise performance while being resilient to radiation exposure, vibration, shock, and temperature variations. Furthermore, we demonstrate a robust means of automatically (re)locking the laser to the cavity when resonance is lost. We show that the mounted cavity is capable of reaching technology readiness level (TRL) 6, paving the way for high-performance ultrastable laser systems and eventually optical atomic clocks amenable to future satellite platforms.

2.
J Nanosci Nanotechnol ; 21(4): 2633-2640, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500086

RESUMO

The use of computer simulations has become almost essential for prediction and interpretation of device's performance. In gas sensing field, the simulation of specific conditions, which determine the physical-chemical properties of widely used metal oxide semiconductors, can be used to investigate the performance of gas sensors based on these kinds of materials. The aim of this work was to evaluate the physical-chemical properties of tin dioxide employed for environmental and health gas sensing application and to investigate the influence of oxygen vacancies on its properties by means of density functional theory. Two samples, having different concentration of oxygen vacancies, were deeply studied in terms of their structural, electronic and electrical properties. It was proved the influence of oxygen vacancies on lattice parameter. By increasing oxygen vacancies concentration, the increased number of impurity states took these closer to the conduction band minimum, which can lead to an easier adsorption process of oxygen species and their availability to be exchanges with the molecules of the target gases. In this way a reduction of the operating temperature can be observed, thus reducing the power consumption of devices, while keeping the catalytic performance of the material.

3.
Inorg Chem ; 57(14): 8487-8498, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29969022

RESUMO

The paper reports on the feasibility of obtaining graphene nanomaterials with remarkable structural and chemical features from shungite rocks. The investigation of the composition and structural modifications induced in the pristine, natural C-containing mineraloid by a specifically designed physicochemical purification treatment is performed by a combined use of several techniques (scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopies). The adopted material processing enables efficient extraction of the C phase in the form of thin polycrystalline platelets of a few hundred nanometers sizes, and formed by 6-10 graphene sheets. About 80% of such nanostructures are characterized by a regular sp2 C honeycomb lattice and an ordered stacking of graphene layers with a d-spacing of ∼0.34 nm. The low oxygen content (∼5%), mainly found in the form of hydroxyl functional groups, provides the graphene platelets (GP) with a chemistry strictly close to that of conventional rGO materials. Such a feature is supported by the high conductivity value of 1.041 × 103 S cm-1 found for pelletized GP, which can be considered a valuable active material for a wide spectrum of advanced applications.

4.
J Phys Condens Matter ; 30(32): 324001, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29947619

RESUMO

Germanium (Ge) surfaces have been irradiated with 26 keV gold (Au) ions at a constant fluence and at incidence angles varying from 0° to 85°. The evolution of the emerging nanostructures is studied by atomic force microscopy (AFM), scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and cross-sectional transmission electron microscopy. The obtained results are compared with findings reported in the literature. Periodic rippled patterns with the wave vector parallel to the projection of the ion beam direction onto the Ge surface develop between 30° and 45°. From 75° the morphology changes from parallel-mode ripples to parallel-mode terraces, and by further increasing the incidence angle the terraces coarsen and show a progressive break-up of the front facing the ion beam. No perpendicular-mode ripples or terraces have been observed. The analysis of the AFM height profiles and slope distributions shows in the 45°-85° range an angular dependence of the temporal scale for the onset of nonlinear processes. For incidence angles below 45°, the surface develops a sponge-like structure, which persists at higher incidence angles on the top and partially on the face of the facets facing the ion beam. The XPS and the energy-dispersive x-ray spectroscopy evidence the presence of Au nano-aggregates of different sizes for the different incidence angles. This study points out the peculiar behavior of Ge surfaces irradiated with medium-energy Au ions and warns about the differences to be faced when trying to build a universal framework for the description of semiconductor pattern evolution under ion-beam irradiation.

5.
Nanoscale ; 9(39): 14861-14874, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28948996

RESUMO

Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.


Assuntos
Adesão Celular , Nanoestruturas , Células de Schwann/citologia , Animais , Proliferação de Células , Células Cultivadas , Germânio , Regeneração Nervosa , Polietilenotereftalatos , Ratos Wistar
6.
J Biol Inorg Chem ; 21(2): 241-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26759251

RESUMO

Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95% hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , Sobrecarga de Ferro/metabolismo , Síncrotrons , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Humanos
7.
Acta Biomater ; 8(2): 843-51, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22005331

RESUMO

The use of magnetic activation has been proposed to answer the growing need for assisted bone and vascular remodeling during template/scaffold regeneration. With this in mind, a synthesis procedure was developed to prepare bioactive (Fe2+/Fe3+)-doped hydroxyapatite (Fe-HA), endowed with superparamagnetic-like properties. This new class of magnetic hydroxyapatites can be potentially employed to develop new magnetic ceramic scaffolds with enhanced regenerative properties for bone surgery; in addition, magnetic Fe-HA can find application in anticancer therapies, to replace the widely used magnetic iron oxide nanoparticles, whose long-term cytotoxicity was recently found to reach harmful levels. An extensive physicochemical, microstructural and magnetic characterization was performed on the obtained Fe-HA powders, and demonstrated that the simultaneous addition of Fe2+ and Fe3+ ions during apatite nucleation under controlled synthesis conditions induces intrinsic magnetization in the final product, minimizing the formation of magnetite as secondary phase. This result potentially opens new perspectives for biodevices aimed at bone regeneration and for anti-cancer therapies based on hyperthermia.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Temperatura Alta , Ferro/química , Magnetismo , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Durapatita/farmacologia , Ferro/farmacologia , Campos Magnéticos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Pós , Coelhos , Espectroscopia por Absorção de Raios X , Difração de Raios X
8.
Acta Crystallogr B ; 67(Pt 4): 357-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21775814

RESUMO

The crystal structure of the metastable form C polymorph of nifedipine [C(17)H(18)N(2)O(6), 3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate] was determined by means of direct-space techniques applied to high-resolution synchrotron powder diffraction data. The polymorph crystallizes in the space group P1 and exhibits a molecular packing significantly different from that of the stable modification, with molecules aligned in an orthogonal configuration inside the unit cell. The molecular conformation, on the other hand, remains substantially unmodified between the two polymorphs. Additionally, in situ thermal characterization of nifedipine crystallization behaviour was performed, confirming the nucleation of another metastable polymorph (form B) prior to the complete crystallization of the stable modification. A complete structural characterization of form B was not possible owing to its very limited stability interval.


Assuntos
Nifedipino/química , Algoritmos , Modelos Moleculares , Conformação Molecular , Difração de Pó , Síncrotrons
9.
J Synchrotron Radiat ; 18(Pt 2): 238-44, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21335911

RESUMO

A highly specific accumulation of the toxic element lead was recently measured in the transition zone between non-calcified and calcified normal human articular cartilage. This transition zone, the so-called `tidemark', is considered to be an active calcification front of great clinical importance. However, little is known about the mechanisms of accumulation and the chemical form of Pb in calcified cartilage and bone. Using spatially resolved X-ray absorption near-edge structure analysis (µ-XANES) at the Pb L(3)-edge, the chemical state of Pb in the osteochondral region was investigated. The feasibility of the µ-XANES set-up at the SUL-X beamline (ANKA synchrotron light source) was tested and confirmed by comparing XANES spectra of bulk Pb-reference compounds recorded at both the XAS and the SUL-X beamline at ANKA. The µ-XANES set-up was then used to investigate the tidemark region of human bone (two patella samples and one femoral head sample). The spectra recorded at the tidemark and at the trabecular bone were found to be highly correlated with the spectra of synthetic Pb-doped carbonated hydroxyapatite, suggesting that in both of these very different tissues Pb is incorporated into the hydroxyapatite structure.


Assuntos
Cartilagem Articular/química , Chumbo/metabolismo , Espectroscopia por Absorção de Raios X/métodos , Cabeça do Fêmur/química , Humanos , Chumbo/química , Patela/química
10.
Anal Bioanal Chem ; 399(2): 927-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21046076

RESUMO

A total reflection X-ray fluorescence (TXRF) procedure was developed for the determination of metal traces in petrochemical end products or intermediates for surfactant synthesis. The method combines a fast and straightforward sample preparation, i.e. deposition on the sample holder and evaporation of the sample matrix, with an efficient quantification method based on internal standardization (organic gallium standard). The method developed showed detection limits below 0.05 µg g(-1) and in most cases below 0.005 µg g(-1). Fifteen elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rh, Sn, Sr, V and Zn) were determined in matrices such as paraffins, n-olefins, linear alkylbenzenes, long-chain alkyl alcohols and esters: typical metal contents were below 1 µg g(-1). The results were compared with the reference method ASTM D5708 (test method B) based on inductively coupled plasma optical emission spectroscopy: advantages and drawbacks of the two procedures were critically evaluated. The TXRF method developed showed comparable precision and absence of bias with respect to the reference method. A comparison of the performances of the two methods is presented.

11.
Anal Bioanal Chem ; 396(8): 2825-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19941133

RESUMO

A need for analysis techniques, complementary to secondary ion mass spectrometry (SIMS), for depth profiling dopants in silicon for ultra shallow junction (USJ) applications in CMOS technologies has recently emerged following the difficulties SIMS is facing there. Grazing incidence X-ray fluorescence (GIXRF) analysis in the soft X-ray range is a high-potential tool for this purpose. It provides excellent conditions for the excitation of the B-K and the As-L(iii,ii) shells. The X-ray standing wave (XSW) field associated with GIXRF on flat samples is used here as a tunable sensor to obtain information about the implantation profile because the in-depth changes of the XSW intensity are dependent on the angle of incidence. This technique is very sensitive to near-surface layers and is therefore well suited for the analysis of USJ distributions. Si wafers implanted with either arsenic or boron at different fluences and implantation energies were used to compare SIMS with synchrotron radiation-induced GIXRF analysis. GIXRF measurements were carried out at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II using monochromatized undulator radiation of well-known radiant power and spectral purity. The use of an absolutely calibrated energy-dispersive detector for the acquisition of the B-Kalpha and As-Lalpha fluorescence radiation enabled the absolute determination of the total retained dose. The concentration profile was obtained by ab initio calculation and comparison with the angular measurements of the X-ray fluorescence.

12.
Anal Bioanal Chem ; 382(8): 1958-64, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16034618

RESUMO

A direct analysis procedure for the determination of trace impurities of Ca, V, Cr, Mn, Fe, Ni, Cu, Zn and Ga in Al2O3 ceramic powders by total reflection X-ray fluorescence spectrometry (TXRF) is described. The powders were analysed in the form of slurries containing 1-10 mg mL(-1) of powder. The use of the procedure in the case of powders with differing grain size and for different slurry concentrations was investigated. Three different quantification possibilities were compared, namely the use of Al as a matrix component, the use of Fe as a trace element contained in the sample or of Co added in concentrations of 200 microg g(-1) as internal standard. The homogeneity of elemental distributions in sample layers deposited on the TXRF quartz carriers by evaporating 5 microL of the 10 mg mL(-1) slurries was studied by scanning the 4- to 5-mm-diameter spots of two samples by synchrotron radiation TXRF at Hasylab. For powders with differing graininess but mainly finer than about a few 10 microm, no systematic influence of the grain size on the accuracy of the determinations of Ca, V, Fe, Ni, Cu and Zn could be observed. The measurement precision, however, seemed to be limited by inhomogeneous distributions of the trace elements in the samples as testified by the synchrotron radiation TXRF scans. Detection limits of the developed TXRF procedure for Ca, V, Cr, Mn, Fe, Ni, Cu, Zn and Ga were found to be in the 0.3-7 microg g(-1) range and were shown to increase slightly with the grain size of the samples. Quantification using Al (matrix) as internal standard led to systematically higher values out of the accuracy required, whereas the other two approaches in all cases led to reliable results.


Assuntos
Óxido de Alumínio/análise , Óxido de Alumínio/química , Espectrometria de Fluorescência/métodos , Espectrometria por Raios X/métodos , Oligoelementos/análise , Cálcio/análise , Gálio/análise , Tamanho da Partícula , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...