Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Sci Adv ; 10(14): eadj9305, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569042

RESUMO

The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.


Assuntos
Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Fenótipo
2.
Nat Commun ; 15(1): 1664, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395976

RESUMO

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Redes Reguladoras de Genes , Cromatina/genética , Diferenciação Celular/genética , Fator 3 de Transcrição de Octâmero/genética
3.
Stem Cell Reports ; 18(9): 1744-1752, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703820

RESUMO

The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research.


Assuntos
Pesquisa com Células-Tronco , Humanos , Reprodutibilidade dos Testes
4.
Cell ; 186(18): 3755-3757, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657417

RESUMO

The second week of embryonic development is a critical phase of the human life cycle and one that has been largely inaccessible to scientific investigation. Recent studies of human embryo models built from stem cells promise to yield dramatic insights into the key events of cell specification and morphogenesis that occur during this brief window of embryogenesis.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Gravidez , Animais , Humanos , Estágios do Ciclo de Vida , Morfogênese , Células-Tronco
5.
Cell ; 186(17): 3548-3557, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595564

RESUMO

A human embryo's legal definition and its entitlement to protection vary greatly worldwide. Recently, human pluripotent stem cells have been used to form in vitro models of early embryos that have challenged legal definitions and raised questions regarding their usage. In this light, we propose a refined legal definition of an embryo, suggest "tipping points" for when human embryo models could eventually be afforded similar protection to that of embryos, and then revisit basic ethical principles that might help to draft a roadmap for the gradual, justified usage of embryo models in a manner that aims to maximize benefits to society.


Assuntos
Pesquisas com Embriões , Embrião de Mamíferos , Humanos , Células-Tronco Pluripotentes , Pesquisas com Embriões/ética
6.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292794

RESUMO

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discovered 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which were highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlied the coordinated expression of genes in the GNMs. Epigenetic analyses revealed that regulatory networks underlying self-renewal and pluripotency have a surprising level of complexity. Genetic analyses identified thousands of regulatory variants that overlapped predicted transcription factor binding sites and were associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network were significantly enriched for regulatory variants with large effects, suggesting that they may play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work captures the coordinated activity of tens of thousands of regulatory elements in hiPSCs and bins these elements into discrete functionally characterized regulatory networks, shows that regulatory elements in pluripotency networks harbor variants with large effects, and provides a rich resource for future pluripotent stem cell research.

7.
Nature ; 617(7962): 683-684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198461

Assuntos
Células-Tronco
8.
Cell Stem Cell ; 29(12): 1624-1636, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459966

RESUMO

It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.


Assuntos
Epigenômica , Células-Tronco Pluripotentes , Humanos , Pesquisa com Células-Tronco , Oncogenes , Epigênese Genética
9.
Cancer Cell ; 40(12): 1448-1453, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270276

RESUMO

3D patient tumor avatars (3D-PTAs) hold promise for next-generation precision medicine. Here, we describe the benefits and challenges of 3D-PTA technologies and necessary future steps to realize their potential for clinical decision making. 3D-PTAs require standardization criteria and prospective trials to establish clinical benefits. Innovative trial designs that combine omics and 3D-PTA readouts may lead to more accurate clinical predictors, and an integrated platform that combines diagnostic and therapeutic development will accelerate new treatments for patients with refractory disease.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisão , Estudos Prospectivos , Oncologia
10.
Stem Cell Reports ; 17(6): 1235-1236, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705011

RESUMO

Pluripotent stem cells provide a powerful model for the study of human development and its disorders. Recent studies, including two in this issue of Stem Cell Reports, raise important questions concerning the developmental potential of human pluripotent stem cells, and how the behavior of these cells in vitro mirrors normal embryogenesis.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Desenvolvimento Embrionário , Humanos
11.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216333

RESUMO

Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.


Assuntos
Mutação/genética , Splicing de RNA/genética , Retina/patologia , Descolamento Retiniano/genética , Epitélio Pigmentado da Retina/patologia , Simportadores de Sódio-Bicarbonato/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Descolamento Retiniano/patologia , Tomografia de Coerência Óptica/métodos
12.
Stem Cell Reports ; 17(2): 397-412, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35063131

RESUMO

Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfatidilinositol 3-Quinases/química , Animais , Autofagia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Fase G1 , Humanos , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Teratocarcinoma/tratamento farmacológico , Teratocarcinoma/patologia , Transplante Heterólogo
13.
Cell Stem Cell ; 28(11): 1896-1906, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34672948

RESUMO

Pluripotent cells in the mammalian embryo undergo state transitions marked by changes in patterns of gene expression and developmental potential as they progress from pre-implantation through post-implantation stages of development. Recent studies of cultured mouse and human pluripotent stem cells (hPSCs) have identified cells representative of an intermediate stage (referred to as the formative state) between naive pluripotency (equivalent to pre-implantation epiblast) and primed pluripotency (equivalent to late post-implantation epiblast). We examine these recent findings in light of our knowledge of peri-implantation mouse and human development, and we consider the implications of this work for deriving human embryo models from pluripotent cells.


Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Implantação do Embrião , Embrião de Mamíferos , Camadas Germinativas , Humanos , Camundongos
14.
Stem Cells ; 39(9): 1137-1144, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33932319

RESUMO

Nodal is a transforming growth factor-ß (TGF-ß) superfamily member that plays a number of critical roles in mammalian embryonic development. Nodal is essential for the support of the peri-implantation epiblast in the mouse embryo and subsequently acts to specify mesendodermal fate at the time of gastrulation and, later, left-right asymmetry. Maintenance of human pluripotent stem cells (hPSCs) in vitro is dependent on Nodal signaling. Because it has proven difficult to prepare a biologically active form of recombinant Nodal protein, Activin or TGFB1 are widely used as surrogates for NODAL in hPSC culture. Nonetheless, the expression of the components of an endogenous Nodal signaling pathway in hPSC provides a potential autocrine pathway for the regulation of self-renewal in this system. Here we review recent studies that have clarified the role of Nodal signaling in pluripotent stem cell populations, highlighted spatial restrictions on Nodal signaling, and shown that Nodal functions in vivo as a heterodimer with GDF3, another TGF-ß superfamily member expressed by hPSC. We discuss the role of this pathway in the maintenance of the epiblast and hPSC in light of these new advances.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Humanos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
15.
NPJ Regen Med ; 6(1): 5, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479258

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death among young people, and is increasingly prevalent in the aging population. Survivors of TBI face a spectrum of outcomes from short-term non-incapacitating injuries to long-lasting serious and deteriorating sequelae. TBI is a highly complex condition to treat; many variables can account for the observed heterogeneity in patient outcome. The limited success of neuroprotection strategies in the clinic has led to a new emphasis on neurorestorative approaches. In TBI, it is well recognized clinically that patients with similar lesions, age, and health status often display differences in recovery of function after injury. Despite this heterogeneity of outcomes in TBI, restorative treatment has remained generic. There is now a new emphasis on developing a personalized medicine approach in TBI, and this will require an improved understanding of how genetics impacts on long-term outcomes. Studies in animal model systems indicate clearly that the genetic background plays a role in determining the extent of recovery following an insult. A candidate gene approach in human studies has led to the identification of factors that can influence recovery. Here we review studies of the genetic basis for individual differences in functional recovery in the CNS in animals and man. The application of in vitro modeling with human cells and organoid cultures, along with whole-organism studies, will help to identify genes and networks that account for individual variation in recovery from brain injury, and will point the way towards the development of new therapeutic approaches.

16.
Nat Commun ; 11(1): 2420, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415101

RESUMO

Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells.


Assuntos
Células-Tronco Embrionárias/citologia , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Cromatina/metabolismo , Metilação de DNA , Epigenoma , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Fase G1 , Camadas Germinativas/metabolismo , Glicólise , Humanos , Sistema de Sinalização das MAP Quinases , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , RNA-Seq , Transdução de Sinais
17.
Stem Cell Reports ; 14(2): 167-168, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049060

RESUMO

Stem Cell Reports frequently receives manuscripts dealing with the topic of cancer stem cells. Many of the submissions on this topic have major shortcomings in their content or limits to the conclusions that can be drawn from the results presented. The purpose of this Commentary is to highlight some of the underlying issues so that authors can enhance the strength of their research contributions.


Assuntos
Células-Tronco Neoplásicas/patologia , Editoração , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Humanos
18.
Stem Cell Reports ; 14(2): 169-174, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951813

RESUMO

Over the past few years, a number of research groups have reported striking progress on the generation of in vitro models from mouse and human stem cells that replicate aspects of early embryonic development. Not only do these models reproduce some key cell fate decisions but, especially in the mouse system, they also mimic the spatiotemporal arrangements of embryonic and extraembryonic tissues that are required for developmental patterning and implantation in the uterus. If such models could be developed for the early human embryo, they would have great potential benefits for understanding early human development, for biomedical science, and for reducing the use of animals and human embryos in research. However, guidelines for the ethical conduct of this line of work are at present not well defined. In this Forum article, we discuss some key aspects of this emerging area of research and provide some recommendations for its ethical oversight.


Assuntos
Pesquisas com Embriões , Embrião de Mamíferos/citologia , Guias como Assunto , Modelos Biológicos , Células-Tronco/citologia , Pesquisas com Embriões/ética , Humanos , Internacionalidade
19.
Sci Rep ; 9(1): 2876, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814526

RESUMO

The Sialyl Lewis A antigen, or CA 19-9, is the prototype serum biomarker for adenocarcinoma of the pancreas. Despite extensive clinical study of CA 19-9 in gastrointestinal malignancies, surprisingly little is known concerning the specific cell types that express this marker during development, tissue regeneration and neoplasia. SOX9 is a transcription factor that plays a key role in these processes in foregut tissues. We report the biochemistry and tissue expression of the GCTM-5 antigen, a pancreatic cancer marker related to, but distinct from, CA19-9. This antigen, defined by two monoclonal antibodies recognising separate epitopes on a large glycoconjugate protein complex, is co-expressed with SOX9 by foregut ductal progenitors in the developing human liver and pancreas, and in pancreatic adenocarcinoma. These progenitors are distinct from cell populations identified by DCLK1, LGR5, or canonical markers of liver and pancreatic progenitor cells. Co-expression of this antigen complex and SOX9 also characterises the ductal metaplasia of submucosal glands that occurs during the development of Barrett's oesophagus. The GCTM-5 antigen complex can be detected in the sera of patients with pancreatic adenocarcinoma. The GCTM-5 epitope shows a much more restricted pattern of expression in the normal adult pancreas relative to CA19-9. Our findings will aid in the identification, characterisation, and monitoring of ductal progenitor cells during development and progression of pancreatic adenocarcinoma in man.


Assuntos
Adenocarcinoma/metabolismo , Anticorpos Antineoplásicos/química , Antígeno CA-19-9/metabolismo , Feto/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Adenocarcinoma/patologia , Linhagem Celular , Feto/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/patologia , Pâncreas/embriologia , Pâncreas/patologia , Neoplasias Pancreáticas/patologia
20.
Cell Stem Cell ; 22(1): 25-34, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304340

RESUMO

Minority subpopulations within embryonic stem cell cultures display an expanded developmental potential similar to that of early embryo blastomeres or the early inner cell mass. The ability to isolate and culture totipotent cells capable of giving rise to the entire conceptus would enhance our capacity to study early embryo development, and might enable more efficient generation of chimeric animals for research and organ production for transplantation. Here we review the biological and molecular characterization of cultured cells with developmental potential similar to totipotent blastomeres, and assess recent progress toward the capture and stabilization of the totipotent state in vitro.


Assuntos
Células-Tronco Totipotentes/citologia , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...