Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765557

RESUMO

In this paper, we discuss the creation of a hybrid magnetorheological elastomer that combines nano- and microparticles. The mixture contained 45 wt.% fillers, with combinations of either 0% nanoparticles and 100% microparticles or 25% nanoparticles and 75% microparticles. TGA and FTIR testing confirmed the materials' thermal and chemical stability, while an SEM analysis determined the particles' size and morphology. XRD results were used to determine the crystal size of both nano- and microparticles. The addition of reinforcing particles, particularly nanoparticles, enhanced the stiffness of the composite materials studied, but their overall strength was only minimally affected. The computed interaction parameter relative to the volume fraction was consistent with the previous literature. Furthermore, the study observed a magnetic response increment in composite materials reinforced with nanoparticles above 30 Hz. The isotropic material containing only microparticles had a lower storage modulus than the isotropic sample with nanoparticles without a magnetic field. However, when a magnetic field was applied, the material with only microparticles exhibited a higher storage modulus than the samples with nanoparticles.

2.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37688207

RESUMO

In this study, a piezoelectric harvesting device was developed using polyvinylidene fluoride (PVDF) nanofibers reinforced with either BaTiO3 nanoparticles or graphene powder. BaTiO3 nanoparticles were synthesized through the sol-gel method with an average size of approximately 32 nm. The PVDF nanofibers, along with the nanoparticle composites in an acetone-N,N-dimethylformamide mixture, were produced using a centrifugal Forcespinning™ machine, resulting in a heterogeneous arrangement of fiber meshes, with an average diameter of 1.6 µm. Experimental tests revealed that the electrical performance of the fabricated harvester reached a maximum value of 35.8 Voc, demonstrating the potential of BaTiO3/ PVDF-based piezoelectric devices for designing wearable applications such as body-sensing and energy-harvesting devices.

3.
Polymers (Basel) ; 15(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37514439

RESUMO

In recent years, there has been a growing demand for biocompatible medical devices on the microscale. However, the manufacturing of certain microfeatures has posed a significant challenge. To address this limitation, a new process called ultrasonic injection molding or ultrasonic molding (USM) has emerged as a potential solution. In this study, we focused on the production of a specific microdevice known as Hem-O-Lok, which is designed for ligation and tissue repair during laparoscopic surgery. Utilizing USM technology, we successfully manufactured the microdevice using a nonabsorbable biopolymer that offers the necessary flexibility for easy handling and use. To ensure high-quality microdevices, we extensively investigated various processing parameters such as vibration amplitude, temperature, and injection velocity. Through careful experimentation, we determined that the microdevice achieved optimal quality when manufactured under conditions of maximum vibrational amplitude and temperatures of 50 and 60 °C. This conclusion was supported by measurements of critical microfeatures. Additionally, our materials characterization efforts revealed the presence of a carbonyl (C=O) group resulting from the thermo-oxidation of air in the plasticizing chamber. This finding contributes to the enhanced thermal stability of the microdevices within a temperature range of 429-437 °C.

4.
Nanotechnology ; 30(49): 495303, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31550235

RESUMO

We report the design, fabrication, and experimental characterization of the first fully additively manufactured carbon nanotube (CNT) field emission electron sources. The devices are created via direct ink writing (DIW)-one of the least expensive and most versatile additive manufacturing methods, capable of creating monolithic multi-material objects. The devices are 2.5 cm by 2.5 cm glass substrates coated with two imprints, i.e. a trace made of a CNT ink (the emitting electrode), symmetrically surrounded on both sides by a trace made of Ag microparticle ink (the in-plane extractor gate). The CNT ink is a mixture of (-COOH)-functionalized multiwalled CNTs (MWCNTs), N,N-Dimethylformamide, and ethyl cellulose. Optimization of the formulation of the CNT ink resulted in a MWCNT concentration equal to 0.82 wt% and in imprints with an electrical resistivity equal to 0.78 Ω cm. 3D-printed devices having CNT imprints with active length equal to 25 mm (a single, straight trace with 174.5 µm gap between adjacent Ag microparticle imprints) and 135 mm (a square-loop spiral with 499 µm gap between Ag microparticle adjacent imprints) were characterized in a triode configuration (i.e. using an external anode electrode) at ∼2.5 × 10-7 Torr, yielding emission currents as large as 120 µA (60 µA cm-2), start-up voltages as low as 62 V and gate transmission as high as 99%. The low-cost cold cathode technology is compatible with compact applications such as miniaturized mass spectrometry, handheld x-ray generation, and nanosatellite electric propulsion.

5.
Nanomaterials (Basel) ; 7(9)2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28869523

RESUMO

The aim of this paper focused on obtaining the optimum cruciform geometry of reinforced magnetorheological elastomers (MRE) to perform homogeneous equibiaxial deformation tests, by using optimization algorithms and Finite Element Method (FEM) simulations. To validate the proposed specimen geometry, a digital image correlation (DIC) system was used to compare experimental result measurements with respect to those of FEM simulations. Moreover, and based on the optimum cruciform geometry, specimens produced from MRE reinforced with carbonyl-iron microparticles or iron nanoparticles were subjected to equibiaxial loading and unloading cycles to examine their Mullin's effect and their residual strain deformations.

6.
Polymers (Basel) ; 9(12)2017 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30965996

RESUMO

The aim of this article focuses on identifying how the addition of iron micro- and nanoparticles influences the physical properties of magnetorheological composite materials developed with a polydimethylsiloxane (PDMS) matrix with different contents of silicone oil used as additive. A number of characterization techniques have been performed in order to fully characterize the samples, such as cyclic and uniaxial extension, rheology, swelling, Vibrating sample magnetometer (VSM), X-ray Diffraction (XRD), Scanning electron microscopy (SEM), Fourier-Transform Infrared (FTIR), X-ray photoelectronic spectroscopy (XPS) and Thermogravimetric analysis (TGA). The comparison between two matrices with different shore hardnesses and their mechanical and chemical properties are elucidated by swelling and tensile tests. In fact, swelling tests showed that higher crosslink density leads to increasing elongation at break and tensile strength values for the composite materials. The best mechanical performance in the magnetorheological material was observed for those samples manufactured using a higher silicone oil content in a hard polymeric matrix. Furthermore, it has been found that the magnetic properties are enhanced when nanoparticles are used as fillers instead of microparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA