Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570978

RESUMO

The white-rot fungus Pleurotus ostreatus was used for biological pretreatment of peach palm (Bactris gasipaes) lignocellulosic wastes. Non-treated and treated B. gasipaes inner sheaths and peel were submitted to hydrolysis using a commercial cellulase preparation from T. reesei. The amounts of total reducing sugars and glucose obtained from the 30 d-pretreated inner sheaths were seven and five times higher, respectively, than those obtained from the inner sheaths without pretreatment. No such improvement was found, however, in the pretreated B. gasipaes peels. Scanning electronic microscopy of the lignocellulosic fibers was performed to verify the structural changes caused by the biological pretreatments. Upon the biological pretreatment, the lignocellulosic structures of the inner sheaths were substantially modified, making them less ordered. The main features of the modifications were the detachment of the fibers, cell wall collapse and, in several cases, the formation of pores in the cell wall surfaces. The peel lignocellulosic fibers showed more ordered fibrils and no modification was observed after pre-treatment. In conclusion, a seven-fold increase in the enzymatic saccharification of the Bactris gasipaes inner sheath was observed after pre-treatment, while no improvement in enzymatic saccharification was observed in the B. gasipaes peel.

2.
Heliyon ; 9(6): e17097, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484270

RESUMO

The demand for sustainable and low-cost materials for wastewater treatment is increasing considerably. In this scenario, geopolymers have gained great interest, due to their good mechanical properties, their ability to be produced from industrial waste and their adsorbent or catalytic properties. In this study, novel magnetic mining waste based-geopolymers were produced by incorporating a residue from phosphate waste rocks, which were extensively characterized (XRD, TGA/DTA, SEM, BET, XRF, FTIR, Mössbauer, ss-NMR and XPS). The materials produced showed formation of a dense framework, even with 75% incorporation of the residue. The iron oxides and their magnetic properties remained unchanged, and their application in advanced oxidation reactions were evaluated, in particular, as catalysts in ozonation reactions. All of the geopolymers presented catalytic activity in the ozonation reaction, with catalytic ozone decomposition values of up to 2.98 min-1, which is 99 times greater than non-catalyzed reactions. Moreover, the reuse (performed in three cycles) and hot filtration-like experiments demonstrated, respectively, the regenerability and heterogeneous catalytic properties of the produced materials, showcasing the potential of these waste materials for catalytic geopolymer production. demonstrating the potential of this waste to produce catalytic geopolymers.

3.
Environ Technol ; 44(10): 1426-1437, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34738879

RESUMO

Oil emulsified in water is one of the most difficult mixtures to treat due to the good stability of emulsions, so there is a growing demand for more efficient methods for separating immiscible oil/water mixtures. In this context, the focus of this study was to obtain an adsorbent for the selective treatment of a simulated oily wastewater. To this aim, a modified hydrotalcite sample with hydrophobic and magnetic characteristics was prepared and characterized. Initially, the effect of sodium dodecyl sulfate (SDS) amount on the adsorbent characteristics was evaluated (266-800 mgSDS g-1LDH). The hydrophobic hydrotalcite (LDH-SDS) containing 533 mgSDS g-1LDH (LDH-SDS2) presented a higher interlayer space where the surfactant molecules were arranged perpendicular to the lamellae, allowing better access to the hydrotalcite pores and facilitating the selective adsorption of oil compounds. Moreover, the synergistic association of hydrophobic properties with super-wetting and effective adhesion oil to Fe3O4 favoured the selective adsorption of the simulated oily wastewater onto the hydrophobic and magnetic hydrotalcite (LDH-MSDS), facilitating the post-treatment separation. The kinetic analysis demonstrated that the adsorption equilibrium was attained in 120 min and the pseudo-second order model was the most suitable for predicting the removal of total organic carbon (TOC) from the simulated oily wastewater. The Langmuir model described very well the equilibrium experimental data, with a maximum adsorption capacity for TOC removal using LDH-MSDS of 659.9 mg g-1. Therefore, the modified hydrotalcite prepared in this study showed intrinsic characteristics that make it a promising adsorbent for the selective treatment of oily wastewaters.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cinética , Hidróxido de Alumínio/análise , Óleos , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/química
4.
Plants (Basel) ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432904

RESUMO

The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product's life cycle in a "green" way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain.

5.
Environ Technol ; 42(8): 1271-1282, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31525123

RESUMO

In this study, plastic optical fibre (POF) was considered as a light-transmitting medium and substrate for use in a photocatalytic environmental purification system, using Ag2MoO4 and ß-Ag2MoO4/Ag3PO4 as photocatalysts. Pure Ag2MoO4 and a ß-Ag2MoO4/Ag3PO4 composite were synthesized using a facile precipitation method. The composition, structures and optical properties of as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FESEM), UV/Vis diffuse reflectance spectroscopy (UV/Vis DRS), BET surface area and TGA/DTG. The catalysts were immobilized on POF and on the glass reactor surface and their efficiency in the phenol degradation was evaluated in a batch reactor under visible light. The use of POF offers advantages such as ease of handling and good adherence characteristics to support Ag2MoO4. The photoactivity follows the order ß-Ag2MoO4/Ag3PO4 ≅ Ag2MoO4 > TiO2 P25, for photocatalysts immobilized on the glass reactor surface or in aqueous suspension. The immobilization of Ag2MoO4 on POF revealed that thinner Ag2MoO4 coatings achieved faster pollutant removal rates from solution, and the optimal catalyst deposition is 0.64 mg/cm2, causing maximum the light penetration and electron-hole generation close to the solid-liquid interface.


Assuntos
Fenol , Prata , Catálise , Luz , Fibras Ópticas , Plásticos , Compostos de Prata
6.
J Hazard Mater ; 400: 123254, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947692

RESUMO

This work aimed to provide information that contributes to establishing environmental-friendly methods for synthetic dyes' degradation. The potential decolorization capacity of the crude enzymatic extract produced by Phanerochaete chrysosporium CDBB 686 using corncob as a substrate was evaluated on seven different dyes. Critical variables affecting the in-vitro decolorization process were further evaluated and results were compared with an in-vivo decolorization system. Decolorization with enzymatic extracts presented advantages over the in-vivo system (higher or similar decolorization within a shorter period). Under improved in-vitro process conditions, the dyes with higher decolorization were: Congo red (41.84 %), Poly R-478 (56.86 %), Methyl green (69.79 %). Attempts were made to confirm the transformation of the dyes after the in-vitro process as well as to establish a molecular basis for interpreting changes in toxicity along with the degradation process. In-vitro degradation products of Methyl green presented a toxicity reduction compared with the original dye; however, increased toxicity was found for Congo red degradation products when compared with the original dyes. Thus, for future applications, it is crucial to evaluate the mechanisms of biodegradation of each target synthetic dye as well as the toxicity of the products obtained after enzymatic oxidation.


Assuntos
Corantes , Phanerochaete , Biodegradação Ambiental , Corantes/toxicidade , Vermelho Congo , Oxirredução
7.
Environ Sci Pollut Res Int ; 27(17): 21032-21039, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266617

RESUMO

Endocrine disruptors represent risks to aquatic ecosystem and humans, and are commonly detected in surface water. Photochemical treatments can be used to remove 17ß-estradiol (E2), but few studies have analyzed the kinetics, intermediates, and 17ß-estradiol degradation pathways in natural matrices. In this study, the photochemical behavior of E2 under ultraviolet irradiation (UVC, 254 nm) associated with oxidants (H2O2 or O3) or photocatalyst (TiO2) was investigated to evaluate the degradation potential and the transformation pathway in a natural surface water matrix. Additionally, computational modeling analyses with Ecological Structure Activity Relationships (ECOSAR) software were performed to predict the toxicity from the E2 and its transformation byproducts. E2 degradation kinetics showed adjusted to the pseudo-first-order kinetic model, being kUV/O3 > kUV/TiO2 > kUV/H2O2 > kUV. Eight transformation byproducts were identified by liquid chromatography with time-of-flight mass spectrometry (HPLC/TOF-MS) in natural surface water samples. These byproducts formed as the result of opening the aromatic ring and adding the hydroxyl radical. The E2 degradation pathway was proposed based on the byproducts identified in this study and in previous studies, suggesting the formation of aliphatic and hydroxylated byproducts. E2 treatment presented both very toxic and not harmful byproducts.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Ecossistema , Estradiol , Humanos , Cinética , Oxirredução , Estresse Oxidativo , Fotólise , Raios Ultravioleta
9.
Enzyme Res ; 2017: 5724902, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28589038

RESUMO

The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50) being 47.0 and 285.4 µM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 µM for the hydrolysable tannin and 248.1 µM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 µmol/kg and 88% inhibition at the dose of 294 µmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 µmol/kg (49%) and 620 µmol/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes.

10.
Folia Microbiol (Praha) ; 61(5): 439-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26988863

RESUMO

Pleurotus pulmonarius was cultivated on a corncob-based substrate for producing of mushrooms and for assessing the transformation of the lignocellulosics during the development of fungal biomass. Associated events, such as the release of relevant enzymes and the H2O2 generation, were also monitored. The peaks of laccase and catalase activities occurred at the 5th day and that of Mn peroxidase at the 30th day, simultaneously with a high activity of superoxide dismutase. Increase in the endocellulase and xylanase activities was observed after 10 days, with maximal activities achieved during the 20-30-day period. Maximal values of H2O2 were found after 10 days of cultivation. Electron microscopy and Fourier transform infrared (FTIR) spectroscopy showed strong alterations in the lignocellulosic fibers. The uncultivated and the cultivated substrates at different times were hydrolyzed with commercial cellulase and ß-glucosidase. The highest values of reducing sugars (110.5 ± 5.6 µmol/mL), being 65 % glucose, were obtained using the 20-day cultivated substrate. After the fruiting stage (first flush), enzymatic hydrolysis of the spent mushroom substrate (SMS) yielded 53.0 ± 2.8 and 77.5 ± 4.0 µmol/mL of glucose and total reducing sugars, respectively. Although the release of reducing sugars of the P. pulmonarius SMS was lower than that obtained after 20 days of cultivation, it was still 50 % higher than that obtained using the uncultured substrate. This observation, combined with the fact that SMS constitutes a residue generated as a by-product of the depletion of an agro-industrial residue, allows to conclude that this material offers an interesting economic perspective for the obtainment of cellulosic ethanol.


Assuntos
Lignina/análise , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Zea mays/química , Zea mays/microbiologia , Enzimas/análise , Peróxido de Hidrogênio/análise , Microscopia Eletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Zea mays/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...