Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219991

RESUMO

The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.


Assuntos
Antibacterianos , Peróxidos , Humanos , Antibacterianos/farmacologia , Oxirredução , Oxidantes , Água
2.
Chemosphere ; 349: 140848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036228
3.
Chemosphere ; 339: 139666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532204

RESUMO

Today, water shortage problems around the world have forced the search for new treatment alternatives, in this context, electrochemical oxidation technology is a hopeful process for wastewater treatment, although it is still needed exploration of new efficient and economically viable electrode materials. In this way, mixed metal oxide anodes look like promising alternatives but their preparation is still a significant point to study, searching for finding low-cost materials to improve electrocatalytic efficiencies. In an exploration of this kind of highly efficient materials, this work presents the results obtained using an MMO Ti/IrO2-SnO2-Sb2O5 anode. All the prepared anodes exhibited excellent physical and electrochemical properties. The electrochemical oxidation of 100 mL and 200 mg L-1 Reactive Orange 84 (RO 84) diazo dye was studied using 3 cm2 of such synthesized anodes by applying current densities of 25, 50, and 100 mA cm-2. Faster and more efficient electrochemical oxidation occurred at 100 mA cm-2 with 50 mM of Na2SO4 + 10 mM NaCl as supporting electrolyte at pH 3.0. The degradation and mineralization processes of the above solution were enhanced with the electro-Fenton process with 0.05 mM Fe2+ and upgraded using photoelectron-Fenton with UVA light. This process yielded 91% COD decay with a low energy consumption of 0.1137 kWh (g COD)-1 at 60 min. The evolution of a final carboxylic acid like oxalic was followed by HPLC analysis. The Ti/IrO2-SnO2-Sb2O5 is then an efficient and low-cost anode for the photoelectro-Fenton treatment of RO 84 in a chloride and sulfate media.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Titânio/química , Peróxido de Hidrogênio/química , Oxirredução , Eletrodos , Poluentes Químicos da Água/química , Técnicas Eletroquímicas
5.
Environ Res ; 212(Pt C): 113362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35525294

RESUMO

The electrophoretic deposition of titanium dioxide (TiO2) nanoparticles (Degussa P25) onto a boron-doped diamond (BDD) substrate was carried out to produce a photoanode (TiO2/BDD) to apply in the degradation and mineralization of sodium diclofenac (DCF-Na) in an aqueous medium using photoelectrocatalysis (PEC). This study was divided into three stages: i) photoanode production through electrophoretic deposition using three suspensions (1.25%, 2.5%, 5.0% w/v) of TiO2 nanoparticles, applying 4.8 V for 15 and 20 s; ii) characterization of the TiO2/BDD photoanode using scanning electron microscopy and cyclic voltammetry response with the [Fe(CN)6]3-/4- redox system; iii) degradation of DCF-Na (25 mg L-1) through electrochemical oxidation (EO) on BDD and PEC on TiO2/BDD under dark and UVC-light conditions. The degradation of DCF-Na was evaluated using high-performance liquid chromatography and UV-Vis spectroscopy, and its mineralization measured using total organic carbon and chemical oxygen demand. The results showed that after 2 h, DCF-Na degradation and mineralization reached 98.5% and 80.1%, respectively, through PEC on the TiO2/BDD photoanode at 2.2 mA cm-2 under UVC illumination, while through EO on BDD applying 4.4 mA cm-2, degradation and mineralization reached 85.6% and 76.1%, respectively. This difference occurred because of the optimal electrophoretic formation of a TiO2 film with a 9.17 µm thickness on the BDD (2.5% w/v TiO2, time 15 s, 4.8 V), which improved the electrocatalysis and oxidative capacity of the TiO2/BDD photoanode. Additionally, PEC showed a lower specific energy consumption (1.55 kWh m-3). Thus, the use of nanostructured TiO2 films deposited on BDD is an innovative photoanode alternative for the photoelectrocatalytic degradation of DCF-Na, which substantially improves the degradation capacity of bare BDD.


Assuntos
Boro , Poluentes Químicos da Água , Diclofenaco , Eletrodos , Oxirredução , Titânio/química , Poluentes Químicos da Água/química
6.
Chemosphere ; 303(Pt 1): 134883, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35577132

RESUMO

Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Acetaminofen , Animais , Peróxido de Hidrogênio/metabolismo , Oxirredução , Águas Residuárias , Água , Purificação da Água/métodos
7.
Chemosphere ; 281: 130821, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34000653

RESUMO

Water pollution is an environmental problem in constant raising because of population growing, industrial development, agricultural frontier expansion, and principally because of the lack of wastewater treatment technology to remove organic recalcitrant and toxic pollutants from industrial and domestic wastewater. Recalcitrant compounds are a serious environmental and health problem mainly due to their toxicity and potential hazardous effects on living organisms, including human beings. Conventional wastewater treatments have not been able to remove efficiently pollutants from water; however, electrochemical advanced oxidation processes (EAOPs) are able to solve this environmental concern. One of the most recent EAOPs technology is photoelectrocatalysis (PEC), it consists in applying an external bias potential to a semiconductor film placed over a conductive substrate to avoid the recombination of photogenerated electron-hole (e-/h+) pairs, increasing h+ availability and hydroxyl radicals' formation, responsible for promoting the degradation/mineralization of organic pollutants in aqueous medium. This review summarizes the recent advances in PEC as a promising technology for wastewater treatment. It addresses the fundamentals and kinetic aspects of PEC. An analysis of photoanode materials and of the configuration of photoelectrochemical reactors is also presented, including an analysis of the influence of the main operational parameters on the treatment of contaminated water. Finally, the most recent applications of PEC are reviewed, and the challenges and perspectives of PEC in wastewater treatment are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Humanos , Oxirredução , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
8.
Chemosphere ; 264(Pt 2): 128491, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33045507

RESUMO

The removal of highly concentrated pollutants, presented in a wastewater mixture from industrial tannery effluents by electrocoagulation, was examined. All experiments were carried out in a rotating cylinder electrode reactor with six aluminum anodes and two sedimentation tanks. The influence of the applied current density and rotational speed on the removal efficiency of an electrocoagulation reactor was studied. Chemical oxygen demand was diminished at 70%, while total suspended solids, chromium (III) and turbidity were almost eliminated (>90%) with 6 mA cm-2 of the applied current density. Additionally, a homogeneous cathodic deposit was obtained at the end of each test. Those cathodic deposits and flocs were analyzed by SEM-EDS. Calculations of the cell energy consumption and the produced aluminum cost were estimated for 6 mA cm-2 and 100 rpm, obtaining 1.98 kWh m-3 and $0.7 USD m-3, respectively.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Alumínio , Análise da Demanda Biológica de Oxigênio , Eletrocoagulação , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
9.
Chemosphere ; 267: 129234, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33352363

RESUMO

In this study, known combinations of Advanced Oxidation Processes (AOPs, namely Electro-Fenton (EF), Photo-Electro-Fenton (PEF), Electro-Oxidation (EO), and EO/Ozone (O3) were compared for the discoloration of tannery industry azo dye Brown HT (BHT). The different AOPs were tested in a 0.160 L batch electrochemical stirred thank reactor using Boron Doped Diamond (BDD) electrodes. The influence of parameters such as the current density (j) and the initial BHT concentration were to exanimated on the efficiency of all the tested processes. The oxidation tendency of EF, and PEF were compared with those of EO and O3, based on their efficiency for BHT discoloration, which resulted as PEF > EF > EO > O3. The AOPs showing the best oxidation performance was PEF which, using Na2SO4 (0.05 M) electrolyte solution and Fe2+ (0.5 mM), pH 3.0, j = 71 mA cm-2, and 500 rpm process, achieved 100% discoloration and 80% chemical oxygen demand (COD) abatement after 60 min of treatment for two initial BHT concentrations (50 and 80 mg L-1). The process accounted for a current efficiency of 30% and energy consumption 2.25 kWh (g COD)-1 through the discoloration test. The azo dye gradually degraded, yielding non-toxic oxalic, oxamic, and glyoxylic acid, whose Fe(III) complexes were quickly photolyzed.


Assuntos
Compostos Férricos , Poluentes Químicos da Água , Compostos Azo , Diamante , Eletrodos , Peróxido de Hidrogênio , Oxirredução
10.
Inorg Chem ; 59(2): 1315-1322, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31880434

RESUMO

Gallium (Ga) ion-doped TiO2 (Ga-TiO2) nanocomposite with small particle size (9-10 nm) and high surface area (104 m2/g) has been easily synthesized via sol-gel method at low temperature by using low-valent GaI as a doping precursor. The structural and morphological characterization of Ga-TiO2 was carried out with standard analytical and spectroscopic techniques. Ga doping into the TiO2 matrix inhibited a phase transformation from anatase to rutile (photocatalytically inactive) form, even at a higher temperature of 750 °C. Finally, Ga-TiO2 nanocomposite showed high photocatalytic activity and exhibited 97% degradation of acid violet 63 dye within 60 min. The dye degradation rate constant was calculated as 1.6 × 10-1 and 1.4 × 10-1 min-1 under UV and white light irradiation, respectively, which is higher, as compared to the previously reported Ga-TiO2 composites to date.

11.
RSC Adv ; 9(25): 14033-14039, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35519307

RESUMO

Herein, three novel Pt(ii) complexes with formula [trans-Pt(Br-PyBenz-X)(Cl)2(DMSO)] (1-3) having Br-pyridylbenz-(imida, oxa or othia)-zole (L1-3) derivatives as potential bidentate ligands, under an unusual κ1-N-coordination mode are reported. All compounds were obtained straightforwardly via reaction of corresponding LPB1-3 and [Pt(Cl)2(DMSO)2] (DMSO = dimethyl sulfoxide), at 100 °C in acetonitrile, respectively. 1-3 complexes were characterized by analytical and spectroscopic data: melting point, FT-IR, Raman, UV/Vis and NMR experiments. Cyclic voltammetry studies show an irreversible two-electron process at -0.50 and -0.51 V, which was ascribed to the Pt(ii)/Pt(iv) couple, for complexes 2 and 3. The crystal structure of complex 2 was elucidated by single-crystal X-ray diffraction, where the platinum atom exhibits a square plane geometry, where LPB2 adopts an unusual mono-coordinated mode via an N-κ1-benzoxazole ring. According to DFT calculations the first N-coordination exchanging one DMSO molecule is favourable, while the second N-coordination is highly impeded.

12.
Water Sci Technol ; 78(3-4): 925-935, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30252670

RESUMO

This study evaluates the effectiveness of an artificial neural network-genetic algorithm (ANN-GA) artificial intelligence (AI) model in the prediction of behavior and optimization of an electro-oxidation pilot press-type reactor, which treats a synthetic wastewater prepared with a dye. The ANN was built from real experimental data using as input the following variables: time, flow, j, dye concentration, and as output discoloration. The performance of the ANN was measured with MAPE (8.3868%), calculated from real and predicted values. The coupled AI model was used to find the best operational conditions: discoloration efficiency (above 90%) at j = 27 mA/cm2 and dye concentration of 230 mg/L.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Águas Residuárias , Algoritmos , Oxirredução
13.
Chemosphere ; 205: 682-689, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29729622

RESUMO

Comparative degradation of the industrial dyes Blue BR, Violet SBL and Brown MF 50 mg L-1 has been studied by the electrochemical oxidation (EOx), electro-Fenton (EF), photoelectro-Fenton (PEF) process based on BDD electrode. Each dye was tested in 0.05 mM Na2SO4 with 0.5 mM Fe2+ at pH 3.0, and electrolyzed in a stirred tank reactor under galvanostatic conditions with 2.0, 5.0, 7.0, 11.0 and 18.0 mA cm-2. Dyes were oxidized via hydroxyl radicals (OH) formed at the BDD anode from water oxidation coupled with Fenton's reaction cathodically produced hydrogen peroxide (H2O2). Under Na2SO4 medium close to 100% the decolorization was achieved. Through the color abatement rate the dyes behavior was analyzed at the beginning of the oxidation process. Dissolved Organic Carbon (DOC) was tested to evaluate the degradation. From DOC removal, it was established an increasing relative oxidation power of the EOx < EF < PEF, according with their decolorization trend. This study highlights the potential of the electrochemical/BDD process for the degradation of industrial dyes found in wastewaters under appropriate experimental conditions.


Assuntos
Corantes/efeitos adversos , Técnicas Eletroquímicas/métodos , Eletrodos/estatística & dados numéricos , Peróxido de Hidrogênio/química , Águas Residuárias/química , Laboratórios , Oxirredução
14.
Water Sci Technol ; 78(10): 2131-2140, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629541

RESUMO

This paper reports the degradation of a solution of 0.314 mM diclofenac (DCF), while using 5-15 mM Oxone as oxidizing agent with the catalytic action of 0.05-0.2 mM Co2+. The best performance was obtained for 10 mM Oxone and 0.2 mM Co2+, achieving the total DCF abatement and 77% removal of chemical oxygen demand after 30 min. Oxidizing of sulfate (SO4 •-) and hydroxyl (•OH) radicals was formed by the Co2+/Oxone system. Oxone was firstly oxidized to persulfate ion that was then quickly converted into the above free radicals. For Oxone contents ≥10 mM, the decay of DCF concentration followed a second-order kinetic reaction, but the apparent rate constant changed with the Co2+ concentration used. High-performance liquid chromatography (HPLC) analysis of treated solutions showed the formation of some intermediates, whereas oxalic acid was identified as the prevalent final short-linear carboxylic acid by ion-exclusion HPLC.


Assuntos
Diclofenaco/química , Ácidos Sulfúricos/química , Poluentes Químicos da Água/química , Cobalto/química , Radicais Livres , Cinética , Modelos Químicos
15.
Environ Sci Pollut Res Int ; 24(14): 12506-12514, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27473620

RESUMO

Textile manufacturing is the one responsible for water bodies' contamination through the discharge of colored wastes. This work presents the study of reactive yellow HF (RYHF) dye degradation under two different electrochemical advanced oxidation processes (EAOP), namely anodic oxidation (AO) and electro-Fenton (EF)/boron-doped diamond (BDD) process. For the AO, 100 and 300 mg/L solutions using Pt and BDD as anodes in a 100 mL stirred tank cell were used, with a supporting electrolyte of 0.05 mol/L of Na2SO4 at pH 3 under 30 and 50 mA/cm2 current density. The EF/BDD process was carried out in a flow reactor at 4 and 7 L/min to degrade 100, 200, and 300 mg/L RYHF solutions under 50 and 80 mA/cm2. UV-Vis determinations were used for decolorization evaluation, while high-performance liquid chromatography (HPLC) method provided information on dye degradation rate.


Assuntos
Diamante/química , Poluentes Químicos da Água/química , Boro/química , Eletrodos , Oxirredução
16.
J Hazard Mater ; 319: 78-83, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26952083

RESUMO

Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26745322

RESUMO

Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.


Assuntos
Alumínio/química , Corantes/química , Eletrólise , Indústria Têxtil , Águas Residuárias/química , Poluentes Químicos da Água/química , Água/química , Análise da Demanda Biológica de Oxigênio , Chile , Eletrodos , Recuperação e Remediação Ambiental/métodos , Compostos Orgânicos , Purificação da Água/métodos
18.
J Hazard Mater ; 268: 6-13, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24462986

RESUMO

Electrochemical oxidation (ECOx) of 1-hydroxy-2,4-dinitrobenzene (or 2,4-dinitrophenol: 2,4-DNP) in aqueous solutions by electrolysis under galvanostatic control was studied at Pb/PbO2, Ti/SnO2, Ti/IrxRuySnO2 and Si/BDD anodes as a function of current density applied. Oxidative degradation of 2,4-DNP has clearly shown that electrode material and the current density applied were important parameters to optimize the oxidation process. It was observed that 2,4-DNP was oxidized at few substrates to CO2 with different results, obtaining good removal efficiencies at Pb/PbO2, Ti/SnO2 and Si/BDD anodes. Trends in degradation way depend on the production of hydroxyl radicals (OH) on these anodic materials, as confirmed in this study. Furthermore, HPLC results suggested that two kinds of intermediates were generated, polyhydroxylated intermediates and carboxylic acids. The formation of these polyhydroxylated intermediates seems to be associated with the denitration step and substitution by OH radicals on aromatic rings, this being the first proposed step in the reaction mechanism. These compounds were successively oxidized, followed by the opening of aromatic rings and the formation of a series of carboxylic acids which were at the end oxidized into CO2 and H2O. On the basis of these information, a reaction scheme was proposed for each type of anode used for 2,4-D oxidation.


Assuntos
2,4-Dinitrofenol/química , Boro/química , Diamante/química , Metais Pesados/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Eletroquímica , Eletrodos , Oxirredução , Óxidos/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...