Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 27(7): 532-41, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27031874

RESUMO

Glufosinate-ammonium (GLA), the active component of a widely used herbicide, induces convulsions in rodents and humans. In mouse, intraperitoneal treatment with 75 mg/kg GLA generates repetitive tonic-clonic seizures associated with 100% mortality within 72 h after treatment. In this context, we characterized GLA-induced seizures, their histological consequences and the effectiveness of diazepam treatment. Epileptic discharges on electroencephalographic recordings appeared simultaneously in the hippocampus and the cerebral cortex. Diazepam treatment at 6 h immediately stopped the seizures and prevented animal death. However, intermittent seizures were recorded on electroencephalogram from 6 h after diazepam treatment until 24 h, but had disappeared after 15 days. In our model, neuronal activation (c-Fos immunohistochemistry) was observed 6 h after GLA exposure in the dentate gyrus, CA1, CA3, amygdala, piriform and entorhinal cortices, indicating the activation of the limbic system. In these structures, Fluoro-Jade C and Cresyl violet staining did not show neuronal suffering. However, astroglial activation was clearly observed at 24 h and 15 days after GLA treatment in the amygdala, piriform and entorhinal cortices by PCR quantitative, western blot and immunohistochemistry. Concomitantly, glutamine synthetase mRNA expression (PCR quantitative), protein expression (western blot) and enzymatic activity were upregulated. In conclusion, our study suggests that GLA-induced seizures: (a) involved limbic structures and (b) induced astrocytosis without neuronal degeneration as an evidence of a reactive astrocyte beneficial effect for neuronal protection.


Assuntos
Aminobutiratos/toxicidade , Encéfalo/efeitos dos fármacos , Herbicidas/toxicidade , Organofosfatos/toxicidade , Convulsões/induzido quimicamente , Animais , Anticonvulsivantes/administração & dosagem , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Diazepam/administração & dosagem , Eletroencefalografia , Glutamato-Amônia Ligase/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia
2.
PLoS One ; 9(8): e105996, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153086

RESUMO

Visual sensory impairments are common in Mental Deficiency (MD) and Autism Spectrum Disorder (ASD). These defects are linked to cerebral dysfunction in the visual cortical area characterized by the deregulation of axon growth/guidance and dendrite spine immaturity of neurons. However, visual perception had not been addressed, although the retina is part of the central nervous system with a common embryonic origin. Therefore, we investigated retinal perception, the first event of vision, in a murine model of MD with autistic features. We document that retinal function is altered in Fmr1 KO mice, a model of human Fragile X Syndrome. Indeed, In Fmr1 KO mice had a lower retinal function characterized by a decreased photoreceptors neuron response, due to a 40% decrease in Rhodopsin content and to Rod Outer Segment destabilization. In addition, we observed an alteration of the visual signal transmission between photoreceptors and the inner retina which could be attributed to deregulations of pre- and post- synaptic proteins resulting in retinal neurons synaptic destabilization and to retinal neurons immaturity. Thus, for the first time, we demonstrated that retinal perception is altered in a murine model of MD with autistic features and that there are strong similarities between cerebral and retinal cellular and molecular defects. Our results suggest that both visual perception and integration must be taken into account in assessing visual sensory impairments in MD and ASD.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Retina/fisiopatologia , Rodopsina/genética , Percepção Visual/fisiologia , Animais , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Retina/metabolismo , Rodopsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...