Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12940, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737336

RESUMO

The Devonian Frasnian-Famennian (F-F) boundary marks one of the five main extinction intervals of the Phanerozoic Aeon. This time was characterized by two pulses of oceanic anoxia, named the Lower and Upper Kellwasser events, during which massive marine biodiversity losses occurred. This paper presents high-resolution magnetic susceptibility, X-ray fluorescence elemental geochemistry and carbon isotope datasets obtained from the Steinbruch Schmidt F-F boundary section (Germany). These records lead to an astronomical time calibration of the environmental changes associated with the two ocean anoxia pulses. Cyclostratigraphic interpretation indicates deposition of the black argillaceous Lower and Upper Kellwasser horizons over ~ 90 and ~ 110 kyr, respectively; approximately equivalent to the duration of one short eccentricity cycle. This study confirms that the succession of events within the Upper Kellwasser event is paced by obliquity, under a low-eccentricity orbit. Hence, astronomical insolation forcing likely contributed to the expansion of ocean anoxia and other environmental perturbations associated with these two crises. The new floating chronology established for the Steinbruch Schmidt section is anchored in numerical time by means of a radio-isotopic date, obtained from a bentonite layer interbedded between the two Kellwasser horizons. After anchoring, this time scale gives a high-precision age of 371.870 ± 0.108 Ma for the F-F boundary.

2.
Sci Rep ; 8(1): 9578, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934550

RESUMO

The Frasnian-Famennian boundary records one of the most catastrophic mass extinctions of the Phanerozoic Eon. Several possible causes for this extinction have been suggested, including extra-terrestrial impacts and large-scale volcanism. However, linking the extinction with these potential causes is hindered by the lack of precise dating of either the extinction or volcanic/impact events. In this study, a bentonite layer in uppermost-Frasnian sediments from Steinbruch Schmidt (Germany) is re-analysed using CA-ID-TIMS U-Pb zircon geochronology in order to constrain the date of the Frasnian-Famennian extinction. A new age of 372.36 ± 0.053 Ma is determined for this bentonite, confirming a date no older than 372.4 Ma for the Frasnian-Famennian boundary, which can be further constrained to 371.93-371.78 Ma using a pre-existing Late Devonian age model. This age is consistent with previous dates, but is significantly more precise. When compared with published ages of the Siljan impact crater and basalts produced by large-scale volcanism, there is no apparent correlation between the extinction and either phenomenon, not clearly supporting them as a direct cause for the Frasnian-Famennian event. This result highlights an urgent need for further Late Devonian geochronological and chemostratigraphic work to better understand the cause(s) of this extinction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA