Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 212(1-2): 615-629, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30197455

RESUMO

The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic meridian with an accuracy of 7.5 ms-1 for all daytime conditions encountered by the spacecraft within 15° of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.

2.
Rev Sci Instrum ; 78(11): 114501, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18052493

RESUMO

The bulk motion of the neutral gas at altitudes between about 200 and 600 km is an important factor in predicting the onset of plasma instabilities that are known to distort and/or disrupt high frequency radio communications. These neutral winds have historically been quite difficult to measure, especially from a moving spacecraft. A new space science instrument called the ram wind sensor has been developed to measure the component of the neutral gas velocity that lies along the orbit track of a satellite in low Earth orbit. Laboratory tests of an engineering model of the instrument have been carried out using a supersonic neutral argon beam, in order to validate the measurement concept. The results show that the technique is viable for measurements of neutral flow velocities in future satellite missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA