Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Mater Today Adv ; 72020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33103106

RESUMO

There has been a recent surge in the use of cryo and/or vacuum specimen preparation and transfer systems to broaden the scope of research enabled by the microscopy technique of atom probe tomography. This is driven by the fact that, as for many microscopes, the application of atom probes to air- and temperature-sensitive materials or wet biological specimens has previously been limited by transfer through air at room temperature. Here we provide an overview of areas of research that benefit from these new transfer and analysis protocols, as well as a review of current advances in transfer devices, environmental cells, and glove boxes for controlled specimen manipulation. This includes the study of catalysis and corrosion, biological samples, liquid-solid interfaces, natural aging, and the distribution of hydrogen in materials.

3.
Ultramicroscopy ; 194: 89-99, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092393

RESUMO

A site-specific, cryogenic, focused ion beam (FIB) method is presented for the preparation of atom probe tomography (APT) specimens from a frozen liquid/solid interface. As a practical example, the interface between water and a corroded boroaluminosilicate glass has been characterized by APT for the first time. The water/glass interface is preserved throughout specimen preparation by plunge freezing the corroding glass particles with the corrosion solution into slush nitrogen. Site-specific specimen preparation is enabled through a new approach to extract and mount a small volume of material using a cryogenically cooled FIB stage and micromanipulator. The prepared APT specimens are subsequently transferred from the FIB to APT under cryogenic and high-vacuum conditions using a novel FIB/APT transfer shuttle and home-built environmental transfer hub attached to the APT system. Particular focus is given to the technical methods for specimen fabrication under cryogenic conditions. Persistent challenges are discussed in addition to future opportunities for this new specimen preparation method.


Assuntos
Tomografia/métodos , Vidro/química , Nitrogênio/química , Soluções/química , Manejo de Espécimes/métodos , Água/química
4.
J Phys Chem Lett ; 4(6): 993-8, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26291366

RESUMO

The addition of pulsed lasers to atom probe tomography (APT) extends its high spatial and mass resolution capability to nonconducting materials, such as oxides. For a prototypical metal oxide, MgO, the measured stoichiometry depends strongly on the laser pulse energy and applied voltage. Very low laser energies (0.02 pJ) and high electric fields yield optimal stoichiometric accuracy. Correlated APT and aberration-corrected transmission electron microscopy (TEM) are used to establish the high density of corner and terrace sites on MgO sample surfaces before and after APT. For MgO, long-lifetime photoexcited holes localized at oxygen corner sites can assist in the creation of oxygen neutrals that may spontaneously desorb either as atomic O or as molecular O2. The observed trends are best explained by the relative field-dependent ionization of photodesorbed O or O2 neutrals. These results emphasize the importance of considering electronic excitations in APT analysis of oxide materials.

5.
Nano Lett ; 12(4): 1965-71, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22432793

RESUMO

VLS-grown semiconductor nanowires have emerged as a viable prospect for future solar-based energy applications. In this paper, we report highly efficient charge separation and collection across in situ doped Si p-n junction nanowires with a diameter <100 nm grown in a cold wall CVD reactor. Our photoexcitation measurements indicate an internal quantum efficiency of ~50%, whereas scanning photocurrent microscopy measurements reveal effective minority carrier diffusion lengths of ~1.0 µm for electrons and 0.66 µm for holes for as-grown Si nanowires (d(NW) ≈ 65-80 nm), which are an order of magnitude larger than those previously reported for nanowires of similar diameter. Further analysis reveals that the strong suppression of surface recombination is mainly responsible for these relatively long diffusion lengths, with surface recombination velocities (S) calculated to be 2 orders of magnitude lower than found previously for as-grown nanowires, all of which used hot wall reactors. The degree of surface passivation achieved in our as-grown nanowires is comparable to or better than that achieved for nanowires in prior studies at significantly larger diameters. We suggest that the dramatically improved surface recombination velocities may result from the reduced sidewall reactions and deposition in our cold wall CVD reactor.

6.
J Nanosci Nanotechnol ; 4(8): 995-1004, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15656193

RESUMO

Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.


Assuntos
Teste de Materiais/métodos , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Espectrofotometria Infravermelho/métodos , Teste de Materiais/normas , Nanotubos de Carbono/normas , Controle de Qualidade , Valores de Referência , Espectrofotometria Infravermelho/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA