Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 7(65): eabl6307, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442701

RESUMO

Current space exploration roadmaps envision exploring the surface geology of celestial bodies with robots for both scientific research and in situ resource utilization. In such unstructured, poorly lit, complex, and remote environments, automation is not always possible, and some tasks, such as geological sampling, require direct teleoperation aided by force-feedback (FF). The operator would be on an orbiting spacecraft, and poor bandwidth, high latency, and packet loss from orbit to ground mean that safe, stable, and transparent interaction is a substantial technical challenge. For this scenario, a control method was developed that ensures stability at high delay without reduction in speed or loss of positioning accuracy. At the same time, a new level of safety is achieved not only through FF itself but also through an intrinsic property of the approach preventing hard impacts. On the basis of this method, a tele-exploration scenario was simulated in the Analog-1 experiment with an astronaut on the International Space Station (ISS) using a 6-degree-of-freedom (DoF) FF capable haptic input device to control a mobile robot with manipulator on Earth to collect rock samples. The 6-DoF FF telemanipulation from space was performed at a round-trip communication delay constantly between 770 and 850 milliseconds and an average packet loss of 1.27%. This experiment showcases the feasibility of a complete space exploration scenario via haptic telemanipulation under spaceflight conditions. The results underline the benefits of this control method for safe and accurate interactions and of haptic feedback in general.


Assuntos
Robótica , Retroalimentação , Geologia , Órbita , Planetas
2.
Front Robot AI ; 8: 611251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179105

RESUMO

Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator. Several technological methods that form the backbone of the MATM approach have already been successfully demonstrated in accomplished telerobotic space missions. On this basis, we have applied our approach in more recent research to applications in the fields of orbital robotics, telesurgery, caregiving, and telenavigation. In the course of this work, we have advanced specific aspects of the approach that were of particular importance for each respective application, especially shared autonomy, and haptic augmentation. This overview paper discusses the MATM approach in detail, presents the latest research results of the various technologies encompassed within this approach, provides a retrospective of DLR's telerobotic space missions, demonstrates the broad application potential of MATM based on the aforementioned use cases, and outlines lessons learned and open challenges.

3.
Front Robot AI ; 8: 716598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35309724

RESUMO

Applications for dexterous robot teleoperation and immersive virtual reality are growing. Haptic user input devices need to allow the user to intuitively command and seamlessly "feel" the environment they work in, whether virtual or a remote site through an avatar. We introduce the DLR Exodex Adam, a reconfigurable, dexterous, whole-hand haptic input device. The device comprises multiple modular, three degrees of freedom (3-DOF) robotic fingers, whose placement on the device can be adjusted to optimize manipulability for different user hand sizes. Additionally, the device is mounted on a 7-DOF robot arm to increase the user's workspace. Exodex Adam uses a front-facing interface, with robotic fingers coupled to two of the user's fingertips, the thumb, and two points on the palm. Including the palm, as opposed to only the fingertips as is common in existing devices, enables accurate tracking of the whole hand without additional sensors such as a data glove or motion capture. By providing "whole-hand" interaction with omnidirectional force-feedback at the attachment points, we enable the user to experience the environment with the complete hand instead of only the fingertips, thus realizing deeper immersion. Interaction using Exodex Adam can range from palpation of objects and surfaces to manipulation using both power and precision grasps, all while receiving haptic feedback. This article details the concept and design of the Exodex Adam, as well as use cases where it is deployed with different command modalities. These include mixed-media interaction in a virtual environment, gesture-based telemanipulation, and robotic hand-arm teleoperation using adaptive model-mediated teleoperation. Finally, we share the insights gained during our development process and use case deployments.

4.
Philos Trans R Soc Lond B Biol Sci ; 375(1798): 20190247, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32200736

RESUMO

Competition for limiting resources is among the most fundamental ecological interactions and has long been considered a key driver of species coexistence and biodiversity. Species' minimum resource requirements, their R*s, are key traits that link individual physiological demands to the outcome of competition. However, a major question remains unanswered-to what extent are species' competitive traits able to evolve in response to resource limitation? To address this knowledge gap, we performed an evolution experiment in which we exposed Chlamydomonas reinhardtii for approximately 285 generations to seven environments in chemostats that differed in resource supply ratios (including nitrogen, phosphorus and light limitation) and salt stress. We then grew the ancestors and descendants in a common garden and quantified their competitive abilities for essential resources. We investigated constraints on trait evolution by testing whether changes in resource requirements for different resources were correlated. Competitive abilities for phosphorus improved in all populations, while competitive abilities for nitrogen and light increased in some populations and decreased in others. In contrast to the common assumption that there are trade-offs between competitive abilities for different resources, we found that improvements in competitive ability for a resource came at no detectable cost. Instead, improvements in competitive ability for multiple resources were either positively correlated or not significantly correlated. Using resource competition theory, we then demonstrated that rapid adaptation in competitive traits altered the predicted outcomes of competition. These results highlight the need to incorporate contemporary evolutionary change into predictions of competitive community dynamics over environmental gradients. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/fisiologia , Luz , Nitrogênio/metabolismo , Fósforo/metabolismo , Estresse Salino , Chlamydomonas reinhardtii/efeitos da radiação , Meio Ambiente , Modelos Biológicos
5.
Nat Commun ; 10(1): 5105, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690721

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Proc Biol Sci ; 286(1913): 20191857, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31615363

RESUMO

A major challenge in ecology is to understand determinants of ecosystem functioning and stability in the face of disturbance. Some important species can strongly shape community structure and ecosystem functioning, but their impacts and interactions on ecosystem-level responses to disturbance are less well known. Shallow ponds provide a model system in which to study the effects of such species because some taxa mitigate transitions between alternative ecosystem states caused by eutrophication. We performed pond experiments to test how two foundation species (a macrophyte and a mussel) affected the biomass of planktonic primary producers and its stability in response to nutrient additions. Individually, each species reduced phytoplankton biomass and tended to increase rates of recovery from disturbance, but together the species reversed these effects, particularly with larger nutrient additions. This reversal was mediated by high cyanobacterial dominance of the community and a resulting loss of trait evenness. Effects of the foundation species on primary producer biomass were associated with effects on other ecosystem properties, including turbidity and dissolved oxygen. Our work highlights the important role of foundation species and their interactive effects in determining responses of ecosystem functioning to disturbance.


Assuntos
Ecossistema , Animais , Biomassa , Cianobactérias , Eutrofização , Fitoplâncton , Lagoas
7.
Nat Commun ; 9(1): 4650, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405128

RESUMO

Resource limitation is a major driver of the ecological and evolutionary dynamics of organisms. Short-term responses to resource limitation include plastic changes in molecular phenotypes including protein expression. Yet little is known about the evolution of the molecular phenotype under longer-term resource limitation. Here, we combine experimental evolution of the green alga Chlamydomonas reinhardtii under multiple different non-substitutable resource limitation regimes with proteomic measurements to investigate evolutionary adaptation of the molecular phenotype. We demonstrate convergent proteomic evolution of core metabolic functions, including the Calvin-Benson cycle and gluconeogenesis, across different resource limitation environments. We do not observe proteomic changes consistent with optimized uptake of particular limiting resources. Instead, we report that adaptation proceeds in similar directions under different types of non-substitutable resource limitation. This largely convergent evolution of the expression of core metabolic proteins is associated with an improvement in the resource assimilation efficiency of nitrogen and phosphorus into biomass.


Assuntos
Evolução Molecular Direcionada , Proteoma/metabolismo , Proteínas de Algas/metabolismo , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/metabolismo , Cromossomos/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Anotação de Sequência Molecular , Peptídeos/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
8.
J Int Soc Prev Community Dent ; 5(6): 433-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26759794

RESUMO

OBJECTIVE: Development of dental caries, specifically, white spot lesions (WSLs), continues to be a well-recognized and troubling side effect of orthodontic fixed appliance therapy, despite vast improvement in preventive dental techniques and procedures. The aim of this meta-analysis is to evaluate, determine, and summarize the incidence and prevalence rates of WSLs during orthodontic treatment that have been published in the literature. MATERIALS AND METHODS: According to predetermined criteria, databases were searched for appropriate studies. References of the selected articles and relevant reviews were searched for any missed publications. RESULTS: In the 14 studies evaluated for WSLs, the incidence of new carious lesions formed during orthodontic treatment in patients was 45.8% and the prevalence of lesions in patients undergoing orthodontic treatment was 68.4%. CONCLUSION: The incidence and prevalence rates of WSLs in patients undergoing orthodontic treatment are quite high and significant. This widespread problem of WSL development is an alarming challenge and warrants significant attention from both patients and providers, which should result in greatly increased emphasis on effective caries prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA