Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982836

RESUMO

Psidium guajava L. (guava) leaves have demonstrated their in vitro and in vivo effect against diabetes mellitus (DM). However, there is a lack of literature concerning the effect of the individual phenolic compounds present in the leaves in DM disease. The aim of the present work was to identify the individual compounds in Spanish guava leaves and their potential contribution to the observed anti-diabetic effect. Seventy-three phenolic compounds were identified from an 80% ethanol extract of guava leaves by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. The potential anti-diabetic activity of each compound was evaluated with the DIA-DB web server that uses a docking and molecular shape similarity approach. The DIA-DB web server revealed that aldose reductase was the target protein with heterogeneous affinity for compounds naringenin, avicularin, guaijaverin, quercetin, ellagic acid, morin, catechin and guavinoside C. Naringenin exhibited the highest number of interactions with target proteins dipeptidyl peptidase-4, hydroxysteroid 11-beta dehydrogenase 1, aldose reductase and peroxisome proliferator-activated receptor. Compounds catechin, quercetin and naringenin displayed similarities with the known antidiabetic drug tolrestat. In conclusion, the computational workflow showed that guava leaves contain several compounds acting in the DM mechanism by interacting with specific DM protein targets.


Assuntos
Catequina , Diabetes Mellitus , Psidium , Humanos , Aldeído Redutase , Diabetes Mellitus/tratamento farmacológico , Extratos Vegetais/química , Folhas de Planta/química , Psidium/química , Quercetina/análise
2.
J Chem Inf Model ; 60(9): 4124-4130, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32692571

RESUMO

The DIA-DB is a web server for the prediction of diabetes drugs that uses two different and complementary approaches: (a) comparison by shape similarity against a curated database of approved antidiabetic drugs and experimental small molecules and (b) inverse virtual screening of the input molecules chosen by the users against a set of therapeutic protein targets identified as key elements in diabetes. As a proof of concept DIA-DB was successfully applied in an integral workflow for the identification of the antidiabetic chemical profile in a complex crude plant extract. To this end, we conducted the extraction and LC-MS based chemical profile analysis of Sclerocarya birrea and subsequently utilized this data as input for our server. The server is open to all users, registration is not necessary, and a detailed report with the results of the prediction is sent to the user by email once calculations are completed. This is a novel public domain database and web server specific for diabetes drugs and can be accessed online through http://bio-hpc.eu/software/dia-db/.


Assuntos
Diabetes Mellitus , Preparações Farmacêuticas , Computadores , Bases de Dados Factuais , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes , Internet , Software
3.
Molecules ; 24(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703341

RESUMO

Culinary herbs and spices are widely used as a traditional medicine in the treatment of diabetes and its complications, and there are several scientific studies in the literature supporting the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive compounds of these herbs and spices and their mechanisms of action. The aim of this study was to use inverse virtual screening to provide insights into the bioactive compounds of common herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes. In this study, a library of over 2300 compounds derived from 30 common herbs and spices were screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900 compounds from the herbs and spices library were observed to have potential anti-diabetic activity and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched with potential anti-diabetic compounds. A large percentage of the compounds were observed to be potential polypharmacological agents regulating three or more anti-diabetic drug targets and included compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron and glabridin from liquorice. The major targets identified for the herbs and spices compounds were dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1 (NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha (PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4 (RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17 protein targets. In most cases more than one compound within a given plant could potentially regulate a particular protein target. It was observed that through this multi-compound-multi target regulation of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together with the known scientific literature, indicated that the anti-diabetic potential of common culinary herbs and spices was the result of the collective action of more than one bioactive compound regulating and restoring several dysregulated and interconnected diabetic biological processes.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos , Hipoglicemiantes , Plantas Medicinais/química , Especiarias , Diabetes Mellitus/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico
4.
Molecules ; 24(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137754

RESUMO

Medicinal plants containing complex mixtures of several compounds with various potential beneficial biological effects are attractive treatment interventions for a complex multi-faceted disease like diabetes. In this study, compounds identified from African medicinal plants were evaluated for their potential anti-diabetic activity. A total of 867 compounds identified from over 300 medicinal plants were screened in silico with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) against 17 known anti-diabetic drug targets. Four hundred and thirty compounds were identified as potential inhibitors, with 184 plants being identified as the sources of these compounds. The plants Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans, Dioscorea dregeana, Dodonaea angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus comosus, Mondia whitei, Pelargonium sidoides, Typha capensis, Vinca minor, Voacanga Africana, and Xysmalobium undulatum were identified as new sources rich in compounds with a potential anti-diabetic activity. The major targets identified for the natural compounds were aldose reductase, hydroxysteroid 11-beta dehydrogenase 1, dipeptidyl peptidase 4, and peroxisome proliferator-activated receptor delta. More than 30% of the compounds had five or more potential targets. A hierarchical clustering analysis coupled with a maximum common substructure analysis revealed the importance of the flavonoid backbone for predicting potential activity against aldose reductase and hydroxysteroid 11-beta dehydrogenase 1. Filtering with physiochemical and the absorption, distribution, metabolism, excretion and toxicity (ADMET) descriptors identified 28 compounds with favorable ADMET properties. The six compounds-crotofoline A, erythraline, henningsiine, nauclefidine, vinburnine, and voaphylline-were identified as novel potential multi-targeted anti-diabetic compounds, with favorable ADMET properties for further drug development.


Assuntos
Hipoglicemiantes/análise , Hipoglicemiantes/farmacologia , Internet , Plantas Medicinais/química , Interface Usuário-Computador , Disponibilidade Biológica , Hipoglicemiantes/química , Simulação de Acoplamento Molecular
5.
Food Funct ; 8(12): 4601-4610, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29134218

RESUMO

Ilex guayusa tea preparations are now commercially available as Runa tea. Little is known regarding the antioxidant and anti-inflammatory bioactivities of this tea. The I. guayusa teas had a total polyphenolic content between 54.39 and 67.23 mg GAE per g dry mass and peroxyl radical scavenging capacities between 1773.41 and 2019 µmol TE per g dry mass, nearly half of that for the Camellia sinensis teas. The I. guayusa teas afforded 60-80% protection from oxidative stress in the Caco-2 cellular antioxidant assay, comparable to the C. sinensis teas. The anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells of I. guayusa teas was similarly comparable to the C. sinensis teas with nitric oxide production reduced by 10-30%. Major compounds identified by mass spectrometry were the phenolic mono- and dicaffeoylquinic acid derivatives. I. guayusa teas are a good source of dietary phenolic compounds with cellular antioxidant and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Camellia sinensis/química , Ilex guayusa/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Bebidas/análise , Células CACO-2 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Espectrometria de Massas , Camundongos , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA