Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 78: 104143, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837483

RESUMO

Among the subgenera of African tsetse-transmitted trypanosomes pathogenic to livestock, the least known is the subgenus Pycnomonas, which contains a single species, Trypanosoma suis (TSU), a pathogen of domestic pigs first reported in 1905 and recently rediscovered in Tanzania and Mozambique. Analysis by Fluorescent Fragment Length Barcoding (FFLB) revealed an infection rate of 20.3% (108 out of 530 tsetse flies) in a recent study in the Gorongosa and Niassa wildlife reserves in Mozambique, and demonstrated two groups of Pycnomonas trypanosomes: one (14.1%, 75 flies) showing an FFLB profile identical to the reference TSU from Tanzania, and the other (6.2%, 33 flies) differing slightly from reference TSU and designated Trypanosoma suis-like (TSU-L). Phylogenetic analyses tightly clustered TSU and TSU-L from Mozambique with TSU from Tanzania forming the clade Pycnomonas positioned between the subgenera Trypanozoon and Nannomonas. Our preliminarily exploration of host ranges of Pycnomonas trypanosomes revealed TSU exclusively in warthogs while TSU-L was identified, for the first time for a member of the subgenus Pycnomonas, in ruminants (antelopes, Cape buffalo, and in domestic cattle and goats). The preferential blood meal sources of tsetse flies harbouring TSU and TSU-L were wild suids, and most of these flies concomitantly harboured the porcine trypanosomes T. simiae, T. simiae Tsavo, and T. godfreyi. Therefore, our findings support the link of TSU with suids while TSU-L remains to be comprehensively investigated in these hosts. Our results greatly expand our knowledge of the diversity, hosts, vectors, and epidemiology of Pycnomonas trypanosomes. Due to shortcomings of available molecular diagnostic methods, a relevant cohort of trypanosomes transmitted by tsetse flies to ungulates, especially suids, has been neglected or most likely misidentified. The method employed in the present study enables an accurate discrimination of trypanosome species and genotypes and, hence, a re-evaluation of the "lost" subgenus Pycnomonas and of porcine trypanosomes in general, the most neglected group of African trypanosomes pathogenic to ungulates.


Assuntos
Trypanosoma/genética , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia , Animais , Animais Selvagens , Interações Hospedeiro-Parasita , Gado/parasitologia , Moçambique/epidemiologia , Filogenia , RNA Ribossômico/genética , Ruminantes/parasitologia , Suínos , Doenças dos Suínos/parasitologia , Simpatria , Trypanosoma/patogenicidade , Tripanossomíase Africana/epidemiologia
3.
Parasit Vectors ; 9: 454, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531003

RESUMO

BACKGROUND: Tick-borne diseases (TBDs) are very important in relation to domestic ruminants, but their occurrence among wild ruminants, mainly in the African buffalo Syncerus caffer, remains little known. METHODS: Molecular diagnostic methods were applied to detect Anaplasma marginale, Anaplasma centrale, Anaplasma phagocytophilum, Ehrlichia ruminantium and Ehrlichia chaffeensis in 97 blood samples of African buffalo captured at the Marromeu Reserve in Mozambique. Molecular detection of agents belonging to the family Anaplasmataceae were based on conventional and qPCR assays based on msp5, groEL, 16S rRNA, msp2, pCS20 and vlpt genes. Phylogenetic reconstruction of new Anaplasma isolates detected in African buffalo was evaluated based on msp5, groEL and 16S rRNA genes. RESULTS: All the animals evaluated were negative for specific PCR assays for A. phagocytophilum, E. ruminantium and E. chaffeensis, but 70 animals were positive for A. marginale, showing 2.69 × 10(0) up to 2.00 × 10(5) msp1ß copies/µl. This result overcomes the conventional PCR for A. marginale based on msp5 gene that detected only 65 positive samples. Sequencing and phylogenetic analyses were performed for selected positive samples based on the genes msp5, groEL and 16S rRNA. Trees inferred using different methods separated the 29 msp5 sequences from buffalo in two distinct groups, assigned to A. centrale and A. marginale. The groEL sequences determined for African buffalo samples revealed to be more heterogeneous and inferred trees could not assign them to any species of Anaplasma despite being more related to A. marginale and A. centrale. The highly conserved 16S rRNA gene sequences suggested a close relationship of the new 16 sequences with A. centrale/A. marginale, A. platys and A. phagocytophilum. CONCLUSIONS: Our analysis suggests that different species of Anaplasma are simultaneously present in the African buffalo. To the best of our knowledge, this is the first study that diagnosed Anaplasma spp. in the African buffalo and inferred the taxonomic status of new isolates with different gene sequences. The small fragment of msp5 sequences revealed to be a good target for phylogenetic positioning of new Anaplasma spp. isolates.


Assuntos
Anaplasmataceae/genética , Búfalos/parasitologia , Variação Genética , Infestações por Carrapato/veterinária , Carrapatos/microbiologia , Anaplasmataceae/isolamento & purificação , Animais , DNA Bacteriano/genética , Moçambique/epidemiologia , Filogenia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
5.
BMC Evol Biol ; 14: 203, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25367154

RESUMO

BACKGROUND: African wildlife experienced a reduction in population size and geographical distribution over the last millennium, particularly since the 19th century as a result of human demographic expansion, wildlife overexploitation, habitat degradation and cattle-borne diseases. In many areas, ungulate populations are now largely confined within a network of loosely connected protected areas. These metapopulations face gene flow restriction and run the risk of genetic diversity erosion. In this context, we assessed the "genetic health" of free ranging southern African Cape buffalo populations (S.c. caffer) and investigated the origins of their current genetic structure. The analyses were based on 264 samples from 6 southern African countries that were genotyped for 14 autosomal and 3 Y-chromosomal microsatellites. RESULTS: The analyses differentiated three significant genetic clusters, hereafter referred to as Northern (N), Central (C) and Southern (S) clusters. The results suggest that splitting of the N and C clusters occurred around 6000 to 8400 years ago. Both N and C clusters displayed high genetic diversity (mean allelic richness (A r ) of 7.217, average genetic diversity over loci of 0.594, mean private alleles (P a ) of 11), low differentiation, and an absence of an inbreeding depression signal (mean F IS = 0.037). The third (S) cluster, a tiny population enclosed within a small isolated protected area, likely originated from a more recent isolation and experienced genetic drift (F IS = 0.062, mean A r = 6.160, P a = 2). This study also highlighted the impact of translocations between clusters on the genetic structure of several African buffalo populations. Lower differentiation estimates were observed between C and N sampling localities that experienced translocation over the last century. CONCLUSIONS: We showed that the current genetic structure of southern African Cape buffalo populations results from both ancient and recent processes. The splitting time of N and C clusters suggests that the current pattern results from human-induced factors and/or from the aridification process that occurred during the Holocene period. The more recent S cluster genetic drift probably results of processes that occurred over the last centuries (habitat fragmentation, diseases). Management practices of African buffalo populations should consider the micro-evolutionary changes highlighted in the present study.


Assuntos
Búfalos/genética , África Austral , Animais , Evolução Biológica , Cromossomos de Mamíferos , Conservação dos Recursos Naturais , Ecossistema , Fluxo Gênico , Deriva Genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Cromossomo Y
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...