Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(2): 1475-1483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492574

RESUMO

Rutin is an important flavonoid consumed in the daily diet. It is also known as vitamin P and has been extensively investigated due to its pharmacological properties. On the other hand, neuronal death induced by glutamate excitotoxicity is present in several diseases including neurodegenerative diseases. The neuroprotective properties of rutin have been under investigation, although its mechanism of action is still poorly understood. We hypothesized that the mechanisms of neuroprotection of rutin are associated with the increase in glutamate metabolism in astrocytes. This study aimed to evaluate the protective effects of rutin with a focus on the modulation of glutamate detoxification. We used brain organotypic cultures from post-natal Wistar rats (P7-P9) treated with rutin to evaluate neural cell protection and levels of proteins involved in the glutamate metabolism. Moreover, we used cerebral cortex slices from adult Wistar rats to evaluate glutamate uptake. We showed that rutin inhibited the cell death and loss of glutamine synthetase (GS) induced by glutamate that was associated with an increase in glutamate-aspartate transporter (GLAST) in brain organotypic cultures from post-natal Wistar rats. Additionally, it was observed that rutin increased the glutamate uptake in cerebral cortex slices from adult Wistar rats. We conclude that rutin is a neuroprotective agent that prevents glutamate excitotoxicity and thereof suggest that this effect involves the regulation of astrocytic metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Rutina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Transportador 1 de Aminoácido Excitatório , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/toxicidade , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Ratos , Ratos Wistar
2.
Rev. bras. farmacogn ; 27(2): 199-205, Mar.-Apr. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-843815

RESUMO

ABSTRACT Amburana cearensis (Allemão) A.C. Sm., Fabaceae, has been widely studied for its medicinal activities. Many neurodegenerative disorders are caused by oxidative stress, mitochondrial dysfunction, excitotoxicity induced by glutamate and ultimately cell death. This study describes the chemical profile of the ethanolic, hexane, dichloromethane, and ethyl acetate extracts obtained from seeds of A. cearensis. The objective of this study was to investigate the chemical profile of extracts obtained from seeds of A. cearensis, as well as their cytotoxicity and neuroprotective effects in cultures of neural PC12 cells. Metabolite profile was performed by GC–MS. PC12 cells were treated with increasing concentrations of the extracts (0.01–2000 µg/ml) and the cell viability was analyzed after 24 and 72 h using an MTT test. For the excitotoxicity assay, PC12 cells were pre-treated with glutamate (1 mM) for 6 h and treated with increasing concentrations (0.1–1000 µg/ml) of the extracts. The chromatographic analysis of the extracts detected various compounds with antioxidant properties, with the majority of peaks corresponding to the isoflavone coumarin. Only the hexane extract showed toxicity after 72 h exposure at the highest concentration (1000 µg/ml). By contrast, all extracts increased the cellular viability of PC12 cells against the toxicity caused by glutamate. Therefore, the extracts from the seeds of A. cearensis showed no toxicity and have neuroprotective potential against neuronal damage induced by glutamate, which may be related to their antioxidant properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA