Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 118: 141-152, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045401

RESUMO

Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates. Noc treatment affected spheroids spreading but not the fusion and surprisingly enhanced their stiffness. Vimentin intermediate filaments (VIFs) reorganization affected CSs spreading only. The analysis of all three cytoskeleton systems contribution to spheroids intrinsic properties was performed for the first time.


Assuntos
Citoesqueleto , Filamentos Intermediários , Citoesqueleto de Actina , Microtúbulos , Vimentina
2.
Morfologiia ; 148(6): 70-4, 2015.
Artigo em Russo | MEDLINE | ID: mdl-27141589

RESUMO

Tissue spheroids biofabricated from primary human fibroblasts using non-adhesive agarose forms, were placed by 3D bioprinter on the surface of microfibrous electrospun matrix. It was demonstrated that tissue spheroids attached to the surface of matrix during several hours and then gradually spread for several days which indicates high level of biocompatibiity of electrospun microfibrous polyurethane matrix. During this activity, human fibroblasts used processes of leading cell borders for initial step of attachment to matrix filaments. Tissue constructions formed during spreading of tissue spheroids on the surface of electrospun microfibrous polyurethane matrix seem to be a perspective technology platform for development of new methods of biofabrication and 3D bioprinting.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/citologia , Poliuretanos/química , Esferoides Celulares/citologia , Alicerces Teciduais/química , Humanos , Microscopia Eletrônica de Varredura , Cultura Primária de Células , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA