Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Diabetologia ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656372

RESUMO

AIMS/HYPOTHESIS: Obesity surgery (OS) and diet-induced weight loss rapidly improve insulin resistance. We aim to investigate the impact of either Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery compared with a diet low in energy (low-calorie diet; LCD) on body composition, glucose control and insulin sensitivity, assessed both at the global and tissue-specific level in individuals with obesity but not diabetes. METHODS: In this parallel group randomised controlled trial, patients on a waiting list for OS were randomised (no blinding, sealed envelopes) to either undergo surgery directly or undergo an LCD before surgery. At baseline and 4 weeks after surgery (n=15, 11 RYGB and 4 SG) or 4 weeks after the start of LCD (n=9), investigations were carried out, including an OGTT and hyperinsulinaemic-euglycaemic clamps during which concomitant simultaneous whole-body [18F]fluorodeoxyglucose-positron emission tomography (PET)/MRI was performed. The primary outcome was HOMA-IR change. RESULTS: One month after bariatric surgery and initiation of LCD, both treatments induced similar reductions in body weight (mean ± SD: -7.7±1.4 kg and -7.4±2.2 kg, respectively), adipose tissue volume (7%) and liver fat content (2% units). HOMA-IR, a main endpoint, was significantly reduced following OS (-26.3% [95% CI -49.5, -3.0], p=0.009) and non-significantly following LCD (-20.9% [95% CI -58.2, 16.5). For both groups, there were similar reductions in triglycerides and LDL-cholesterol. Fasting plasma glucose and insulin were also significantly reduced only following OS. There was an increase in glucose AUC in response to an OGTT in the OS group (by 20%) but not in the LCD group. During hyperinsulinaemia, only the OS group showed a significantly increased PET-derived glucose uptake rate in skeletal muscle but a reduced uptake in the heart and abdominal adipose tissue. Both liver and brain glucose uptake rates were unchanged after surgery or LCD. Whole-body glucose disposal and endogenous glucose production were not significantly affected. CONCLUSIONS/INTERPRETATION: The short-term metabolic effects seen 4 weeks after OS are not explained by loss of body fat alone. Thus OS, but not LCD, led to reductions in fasting plasma glucose and insulin resistance as well as to distinct changes in insulin-stimulated glucose fluxes to different tissues. Such effects may contribute to the prevention or reversal of type 2 diabetes following OS. Moreover, the full effects on whole-body insulin resistance and plasma glucose require a longer time than 4 weeks. TRIAL REGISTRATION: ClinicalTrials.gov NCT02988011 FUNDING: This work was supported by AstraZeneca R&D, the Swedish Diabetes Foundation, the European Union's Horizon Europe Research project PAS GRAS, the European Commission via the Marie Sklodowska Curie Innovative Training Network TREATMENT, EXODIAB, the Family Ernfors Foundation, the P.O. Zetterling Foundation, Novo Nordisk Foundation, the Agnes and Mac Rudberg Foundation and the Uppsala University Hospital ALF grants.

2.
Biomolecules ; 14(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38397455

RESUMO

Low-grade inflammation is closely linked to obesity and obesity-related comorbidities; therefore, immune cells have become an important topic in obesity research. Here, we performed a deep phenotypic characterization of circulating T cells in people with obesity, using flow cytometry. Forty-one individuals with obesity (OB) and clinical criteria for bariatric surgery were enrolled in this study. We identified and quantified 44 different circulating T cell subsets and assessed their activation status and the expression of immune-checkpoint molecules, immediately before (T1) and 7-18 months after (T2) the bariatric surgery. Twelve age- and sex-matched healthy individuals (nOB) were also recruited. The OB participants showed higher leukocyte counts and a higher percentage of neutrophils. The percentage of circulating Th1 cells were negatively correlated to HbA1c and insulin levels. OB Th1 cells displayed a higher activation status and lower PD-1 expression. The percentage of Th17 and Th1/17 cells were increased in OB, whereas the CD4+ Tregs' percentage was decreased. Interestingly, a higher proportion of OB CD4+ Tregs were polarized toward Th1- and Th1/17-like cells and expressed higher levels of CCR5. Bariatric surgery induced the recovery of CD4+ Treg cell levels and the expansion and activation of Tfh and B cells. Our results show alterations in the distribution and phenotype of circulating T cells from OB people, including activation markers and immune-checkpoint proteins, demonstrating that different metabolic profiles are associated to distinct immune profiles, and both are modulated by bariatric surgery.


Assuntos
Cirurgia Bariátrica , Células Th1 , Humanos , Linfócitos T Reguladores , Subpopulações de Linfócitos T , Obesidade/cirurgia , Obesidade/metabolismo
3.
EBioMedicine ; 99: 104906, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061240

RESUMO

BACKGROUND: In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS: Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS: Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3ß, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION: Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING: Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Camundongos , Animais , Insulina/metabolismo , Resistência à Insulina/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Canadá , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo
4.
Endocrine ; 83(2): 378-391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752366

RESUMO

PURPOSE: To evaluate the dopaminergic signaling in human adipose tissue in the context of obesity and type 2 diabetes (T2D) and potential direct implications in adipose tissue metabolism. METHODS: mRNA and protein expression of dopamine receptors D1 and D2 (DRD1 and DRD2) were determined in subcutaneous adipose tissue from subjects without or with T2D and with different body weight, and correlated with markers of obesity, hyperglycemia, and insulin resistance. Glucose uptake and lipolysis were measured in adipocytes ex vivo following short-term exposure to dopamine, DRD1 receptor agonist (SKF81297), or DRD2 receptor agonist (bromocriptine). RESULTS: DRD1 and DRD2 gene expression in subcutaneous adipose tissue correlated positively with clinical markers of insulin resistance (e.g. HOMA-IR, insulin, and triglycerides) and central obesity in subjects without T2D. Protein expression of DRD2 in subcutaneous adipose tissue, but not DRD1, is higher in subjects with impaired fasting glucose and T2D and correlated positively with hyperglycemia, HbA1c, and glucose AUC, independent of obesity status. DRD1 and DRD2 proteins were mainly expressed in adipocytes, compared to stromal vascular cells. Dopamine and dopaminergic agonists did not affect adipocyte glucose uptake ex vivo, but DRD1 and DRD2 agonist treatment inhibited isoproterenol-stimulated lipolysis. CONCLUSION: The results suggest that protein expression of DRD2 in subcutaneous adipose tissue is up-regulated with hyperglycemia and T2D. Whether DRD2 protein levels contribute to T2D development or occur as a secondary compensatory mechanism needs further investigation. Additionally, dopamine receptor agonists inhibit adipocyte beta-adrenergic stimulation of lipolysis, which might contribute to the beneficial effects in lipid metabolism as observed in patients taking bromocriptine.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Estado Pré-Diabético , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estado Pré-Diabético/metabolismo , Bromocriptina , Dopamina/metabolismo , Tecido Adiposo/metabolismo , Gordura Subcutânea/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Obesidade/metabolismo , Agonistas de Dopamina , Receptores de Dopamina D2/genética
5.
J Clin Endocrinol Metab ; 109(2): e675-e688, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37708362

RESUMO

CONTEXT: Insulin-antagonistic, counter-regulatory hormones have been implicated in the development of type 2 diabetes (T2D). OBJECTIVE: In this cross-sectional study, we investigated whether glucose-dependent regulation of such hormones differ in individuals with T2D, prediabetes (PD), and normoglycemia (NG). METHODS: Fifty-four individuals with or without T2D underwent one hyperinsulinemic-normoglycemic-hypoglycemic and one hyperglycemic clamp with repeated hormonal measurements. Participants with T2D (n = 19) were compared with a group-matched (age, sex, BMI) subset of participants without diabetes (ND, n = 17), and also with participants with PD (n = 18) and NG (n = 17). RESULTS: In T2D vs ND, glucagon levels were higher and less suppressed during the hyperglycemic clamp whereas growth hormone (GH) levels were lower during hypoglycemia (P < .05). Augmented ACTH response to hypoglycemia was present in PD vs NG (P < .05), with no further elevation in T2D. In contrast, glucagon and GH alterations were more marked in T2D vs PD (P < .05).In the full cohort (n = 54), augmented responses of glucagon, cortisol, and ACTH and attenuated responses of GH correlated with adiposity, dysglycemia, and insulin resistance. In multilinear regressions, insulin resistance was the strongest predictor of elevated hypoglycemic responses of glucagon, cortisol, and ACTH. Conversely, fasting glucose and HbA1c were the strongest predictors of low GH levels during hypoglycemia and elevated, i.e. less suppressed glucagon levels during hyperglycemia, respectively. Notably, adiposity measures were also strongly associated with the responses above. CONCLUSIONS: Altered counter-regulatory hormonal responses to glucose variations are observed at different stages of T2D development and may contribute to its progression by promoting insulin resistance and dysglycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônio do Crescimento Humano , Hipoglicemia , Resistência à Insulina , Estado Pré-Diabético , Humanos , Glucagon , Hormônio do Crescimento , Hidrocortisona , Glucose , Insulina , Estudos Transversais , Glicemia , Hipoglicemiantes , Hormônio Adrenocorticotrópico
6.
Life Sci ; 336: 122306, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030055

RESUMO

Obesity-related chronic low-grade inflammation may trigger insulin resistance and type 2 diabetes (T2D) development. Cells with regulatory phenotype have been shown to be reduced during obesity, especially CD4+ Treg cells. However, little is known about the CD8+ Treg cells. Therefore, we aim to characterize the CD8+ Treg cells in human peripheral blood and adipose tissue, specifically, to address the effect of obesity and insulin resistance in this regulatory immune cell population. A group of 42 participants with obesity (OB group) were recruited. Fourteen of them were evaluated pre- and post-bariatric surgery. A group of age- and sex-matched healthy volunteers (n = 12) was also recruited (nOB group). CD8+ Treg cell quantification and phenotype were evaluated by flow cytometry, in peripheral blood (PB), subcutaneous (SAT), and visceral adipose tissues (VAT). The OB group displayed a higher percentage of CD8+ Treg cells in PB, compared to the nOB. In addition, they were preferentially polarized into Tc1- and Tc1/17-like CD8+ Treg cells, compared to nOB. Moreover, SAT displayed the highest content of CD8+ Tregs infiltrated, compared to PB or VAT, while CD8+ Tregs infiltrating VAT displayed a higher percentage of cells with Tc1-like phenotype. Participants with pre-diabetes displayed a reduced percentage of TIM-3+CD8+ Tregs in circulation, and PD-1+CD8+ Tregs infiltrated in the VAT. An increase in the percentage of circulating Tc1-like CD8+ Treg cells expressing PD-1 was observed post-surgery. In conclusion, obesity induces significant alterations in CD8+ Treg cells, affecting their percentage and phenotype, as well as the expression of important immune regulatory molecules.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Linfócitos T Reguladores , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Receptor de Morte Celular Programada 1/metabolismo , Obesidade/metabolismo , Linfócitos T CD8-Positivos/metabolismo
7.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37972266

RESUMO

BACKGROUND: Catecholamine-stimulated lipolysis is reduced with aging, which may promote adiposity and insulin resistance. Organic cation transporter 3 (OCT3), which is inhibited by estradiol (E2), mediates catecholamine transport into adipocytes for degradation, thus decreasing lipolysis. In this study, we investigated the association of OCT3 mRNA levels in subcutaneous adipose tissue (SAT) with aging and markers of insulin resistance in women. METHODS: SAT biopsies were obtained from 66 women with (19) or without (47) type 2 diabetes (age 22-76 years, 20.0-40.1 kg/m2). OCT3 mRNA and protein levels were measured for group comparisons and correlation analysis. SAT was incubated with E2 and OCT3 mRNA levels were measured. Associations between OCT3 single nucleotide polymorphisms (SNPs) and diabetes-associated traits were assessed. RESULTS: OCT3 mRNA and protein levels in SAT increased with aging. SAT from postmenopausal women had higher levels of OCT3 than premenopausal women, and there was a dose-dependent reduction in OCT3 mRNA levels in SAT treated with E2. OCT3 mRNA levels were negatively associated with markers of insulin resistance, and ex vivo lipolysis. OCT3 SNPs were associated with BMI, waist to hip ratio, and circulating lipids (eg, triglycerides). CONCLUSION: OCT3 mRNA and protein levels in SAT increased with aging, and mRNA levels were negatively associated with markers of insulin resistance. E2 incubation downregulated OCT3 mRNA levels, which may explain lower OCT3 mRNA in premenopausal vs postmenopausal women. High OCT3 protein levels in adipose tissue may result in increased catecholamine degradation, and this can contribute to the reduction in lipolysis observed in women with aging.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Tecido Adiposo/metabolismo , Envelhecimento , Catecolaminas/farmacologia , Catecolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipídeos , RNA Mensageiro/metabolismo , Gordura Subcutânea/metabolismo
8.
Adipocyte ; 12(1): 2242997, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37555665

RESUMO

Cdk5 and Abl enzyme substrate 1 (CABLES1) is a cell cycle regulator that has previously been identified as a candidate gene for obesity-related phenotypes, but little is known about its role in adipose tissue metabolism. In this study, we explore the role of CABLES1 in obesity and type 2 diabetes (T2D) in human subcutaneous adipose tissue (SAT). We performed gene expression analysis of SAT obtained from subjects with and without T2D, and from a second validation cohort consisting of subjects without T2D. We used CRISPR/Cas9 genome editing to perform CABLES1 loss-of-function studies in human primary preadipocytes and assessed them functionally after differentiation. CABLES1 gene expression in SAT was decreased in T2D by almost 25%, and inversely associated with insulin resistance markers and hyperglycaemia. mRNA levels were reduced with increasing BMI and negatively correlated with obesity markers. We found that adipocytes are likely the main CABLES1-expressing cell type in SAT, but CABLES1 depletion in adipocytes caused no phenotypical changes in regards to differentiation, glucose uptake, or expression of key genes of adipocyte function. These findings suggest that CABLES1 gene expression in SAT might be altered in obesity and T2D as a consequence of metabolic dysregulation rather than being a causal factor.


Assuntos
Diabetes Mellitus Tipo 2 , Metabolismo dos Lipídeos , Humanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Obesidade/genética , Obesidade/metabolismo , Gordura Subcutânea/metabolismo
9.
Endocrine ; 81(3): 464-476, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400734

RESUMO

PURPOSE: Obesity is characterized by chronic inflammation that may contribute to insulin resistance and promote type 2 diabetes. We have investigated whether inflammatory responses to glycemic and insulinemic variations are altered in obese individuals. METHODS: Eight obese and eight lean individuals without diabetes had undergone hyperinsulinemic-euglycemic-hypoglycemic and hyperglycemic clamps in a previous study. Using Proximity Extension Assay, 92 inflammatory markers were analyzed from plasma samples at fasting, hyperinsulinemia-euglycemia, hypoglycemia and hyperglycemia. RESULTS: In all participants, hyperinsulinemia, hypoglycemia and hyperglycemia led to reductions of 11, 19 and 62 out of the 70 fully evaluable biomarkers, respectively. FGF-21 increased during both hypoglycemia and hyperglycemia while IL-6 and IL-10 increased during hypoglycemia. In obese vs lean participants, Oncostatin-M, Caspase-8 and 4E-BP1 were more markedly suppressed during hypoglycemia, whereas VEGF-A was more markedly suppressed during hyperglycemia. BMI correlated inversely with changes of PD-L1 and CD40 during hyperinsulinemia, Oncostatin-M, TNFSF14, FGF-21 and 4EBP-1 during hypoglycemia and CCL23, VEGF-A and CDCP1 during hyperglycemia (Rho ≤ -0.50). HbA1c correlated positively with changes of MCP-2 and IL-15-RA during hyperinsulinemia (Rho ≥ 0.51) and inversely with changes of CXCL1, MMP-1 and Axin-1 during hypoglycemia (Rho ≤ -0.55). M-value correlated positively with changes of IL-12B and VEGF-A during hyperglycemia (Rho ≥ 0.51). Results above were significant (p < 0.05). CONCLUSION: Overall, hyperinsulinemia, hypo- and hyperglycemia led to suppression of several inflammatory markers and this tended to be more marked in individuals with obesity, insulin resistance and dysglycemia. Thus, acute glycemic or insulinemic variations do not seem to potentiate possible inflammatory pathways in the development of insulin resistance and disturbed glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hiperinsulinismo , Hipoglicemia , Resistência à Insulina , Humanos , Glucose , Glicemia/metabolismo , Insulina , Fator A de Crescimento do Endotélio Vascular , Técnica Clamp de Glucose , Hiperglicemia/metabolismo , Obesidade/complicações , Biomarcadores , Antígenos de Neoplasias , Moléculas de Adesão Celular
10.
Foods ; 12(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372491

RESUMO

Sugarcane processing produces a significant amount of byproducts in the form of straw and bagasse, which are rich in cellulose, hemicellulose, and lignin. This work aims to provide a valorization approach to sugarcane straw by optimizing a two-step alkaline extraction of arabinoxylans by a response surface methodology to evaluate a potential industrial-scale production. Sugarcane straws were delignified using an alkaline-sulfite pretreatment, followed by alkaline extraction and precipitation of arabinoxylan, a two-step process optimized using a response surface methodology. A KOH concentration of (2.93-17.1%) and temperature (18.8-61.2 °C) were chosen as independent variables, and the arabinoxylan yield (%) as a response variable. The model application shows that KOH concentration, temperature, and the interaction between both independent variables are significant in extracting arabinoxylans from straw. The best-performing condition was further characterized by FTIR, DSC, and chemical and molecular weight evaluation. The straws arabinoxylans presented high purities levels, ca. 69.93%, and an average molecular weight of 231 kDa. The overall estimated production cost of arabinoxylan from straw was 0.239 €/g arabinoxylan. This work demonstrates a two-step alkaline extraction of the arabinoxylans method, as well as their chemical characterization and economic viability analysis, that can be used as a model for industrial scale-up production.

11.
Small Methods ; 7(4): e2201516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775977

RESUMO

Thermoelectric conversion may take a significant share in future energy technologies. Oxide-based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. "Jumping mode" SThM (JM-SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM-SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite-elements model of the SThM probe. The modeling reveals non-negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe-sample contact thermal resistance and probe current frequency.

12.
Metabolites ; 13(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677056

RESUMO

Metabolic inflexibility is a hallmark of insulin resistance and can be extensively explored with high-throughput metabolomics techniques. However, the dynamic regulation of the metabolome during an oral glucose tolerance test (OGTT) in subjects with type 2 diabetes (T2D) is largely unknown. We aimed to identify alterations in metabolite responses to OGTT in subjects with T2D using untargeted metabolomics of both plasma and subcutaneous adipose tissue (SAT) samples. Twenty subjects with T2D and twenty healthy controls matched for sex, age, and body mass index (BMI) were profiled with untargeted metabolomics both in plasma (755 metabolites) and in the SAT (588) during an OGTT. We assessed metabolite concentration changes 90 min after the glucose load, and those responses were compared between patients with T2D and controls. Post-hoc analyses were performed to explore the associations between glucose-induced metabolite responses and markers of obesity and glucose metabolism, sex, and age. During the OGTT, T2D subjects had an impaired reduction in plasma levels of several metabolite families, including acylcarnitines, amino acids, acyl ethanolamines, and fatty acid derivates (p < 0.05), compared to controls. Additionally, patients with T2D had a greater increase in plasma glucose and fructose levels during the OGTT compared to controls (p < 0.05). The plasma concentration change of most metabolites after the glucose load was mainly associated with indices of hyperglycemia rather than insulin resistance, insulin secretion, or BMI. In multiple linear regression analyses, hyperglycemia indices (glucose area under the curve (AUC) during OGTT and glycosylated hemoglobin (HbA1c)) were the strongest predictors of plasma metabolite changes during the OGTT. No differences were found in the adipose tissue metabolome in response to the glucose challenge between T2D and controls. Using a metabolomics approach, we show that T2D patients display attenuated responses in several circulating metabolite families during an OGTT. Besides the well-known increase in monosaccharides, the glucose-induced lowering of amino acids, acylcarnitines, and fatty acid derivatives was attenuated in T2D subjects compared to controls. These data support the hypothesis of inflexibility in several metabolic pathways, which may contribute to dysregulated substrate partitioning and turnover in T2D. These findings are not directly associated with changes in adipose tissue metabolism; therefore, other tissues, such as muscle and liver, are probably of greater importance.

13.
Mol Cell Endocrinol ; 561: 111828, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526026

RESUMO

Second-generation antipsychotics (SGAs), used as the cornerstone treatment for schizophrenia and other mental disorders, can cause adverse metabolic effects (e.g. obesity and type 2 diabetes). We investigated the effects of SGAs on adipocyte differentiation and metabolism. The presence of therapeutic concentrations of aripiprazole (ARI) or its active metabolite dehydroaripiprazole (DARI) during human adipocyte differentiation impaired adipocyte glucose uptake while the expression of gene markers of fatty acid oxidation were increased. Additionally, the use of a supra-therapeutic concentration of ARI inhibited adipocyte differentiation. Furthermore, olanzapine (OLA), a highly obesogenic SGA, directly increased leptin gene expression but did not affect adipocyte differentiation and metabolism. These molecular insights are novel, and suggest that ARI, but not OLA, may directly act via alterations in adipocyte differentiation and potentially by causing a switch from glucose to lipid utilization in human adipocytes. Additionally, SGAs may effect crosstalk with other organs, such as the brain, to exert their adverse metabolic effects.


Assuntos
Antipsicóticos , Diabetes Mellitus Tipo 2 , Humanos , Antipsicóticos/efeitos adversos , Olanzapina/farmacologia , Olanzapina/metabolismo , Aripiprazol/farmacologia , Aripiprazol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Piperazinas/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Adipócitos/metabolismo
14.
Cytokine ; 161: 156080, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368230

RESUMO

OBJECTIVE: Interleukin-33 (IL-33) is associated with obesity-related inflammation. We aim to investigate IL-33 expression in subcutaneous adipose tissue (SAT) in type 2 diabetes (T2D) subjects and its effects on human adipocyte glucose uptake. METHODS: Expression of IL-33 was analysed in SAT from cohort studies including subjects with and without obesity and T2D and correlated with insulin resistance and obesity markers. Magnetic resonance imaging (MRI) of tissue fat volumes was performed. We investigated the effects of IL-33 treatment on ex vivo adipocyte glucose uptake. RESULTS: T2D subjects had higher IL-33 gene and protein expression in SAT than the control subjects. IL-33 mRNA expression was positively correlated with markers of dysglycemia (e.g. HbA1c), insulin resistance (e.g. HOMA-IR) and adiposity (BMI, visceral adipose tissue volume, liver and pancreas fat %). In multiple linear regression analyses, insulin resistance and T2D status were the strongest predictors of IL-33, independent of BMI. IL-33 mRNA expression was negatively correlated with expression of genes regulating adipocyte glucose uptake, lipid storage, and adipogenesis (e.g.glucose transporter 1 and 4 (GLUT1/4), fatty acid binding protein 4 (FABP4), and PPARG). Additionally, incubation of SAT with IL-33 reduced adipocyte glucose uptake and GLUT4 gene and protein expression. CONCLUSIONS: Our findings suggest that T2D subjects have higher IL-33 gene and protein expressionin SATthan control subjects, which is associated with insulin resistance and reduced gene expression of lipid storage and adipogenesis markers. IL-33 may reduce adipocyte glucose uptake. This opens up a potential pharmacological route for reversing insulin resistance in T2D and prediabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Interleucina-33/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
15.
NMR Biomed ; 36(4): e4632, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34676601

RESUMO

The synthesis and turnover of triglyceride in adipose tissue involves enzymes with preferences for specific fatty acid classes and/or regioselectivity regarding the fatty acid position within the glycerol moiety. The focus of the current study was to characterize both the composition of fatty acids and their positional distribution in triglycerides of biopsied human subcutaneous adipose tissue, from subjects with wide ranges of body mass index (BMI) and insulin sensitivity, using 13 C nuclear magnetic resonance (NMR) spectroscopy. The triglyceride sn2 position was significantly more enriched with monounsaturated fatty acids compared with that of sn1,3, while the abundance of saturated fatty acids was significantly lower in the sn2 position compared with that of sn1,3. Furthermore, the analysis revealed significant positive correlations between the total fraction of palmitoleic acid with both BMI and insulin sensitivity scores (homeostatic model assessment of insulin resistance index). Additionally, we established that 13 C NMR chemical shifts for ω-3 signals, centered at 31.9 ppm, provided superior resolution of the most abundant fatty acid species, including palmitoleate, compared with the ω-2 signals that were used previously. 13 C NMR spectroscopy reveals for the first time a highly nonhomogenous distribution of fatty acids in the glycerol sites of human adipose tissue triglyceride, and that these distributions are correlated with different phenotypes, such as BMI and insulin sensitivity.


Assuntos
Resistência à Insulina , Humanos , Tecido Adiposo/química , Ácidos Graxos/análise , Ácidos Graxos Insaturados , Glicerol/análise , Espectroscopia de Ressonância Magnética , Triglicerídeos/análise , Isótopos de Carbono
16.
Biodivers Data J ; 11: e109193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318510

RESUMO

Background: Camellias cultivars collections, comprising an exquisite array of meticulously bred and curated camellia varieties, emerged as indispensable elements within the resplendent 19th century gardens that adorned landscapes across the globe. The heart of Terra Nostra Garden, nestled within the captivating surroundings of the Furnas volcano on S. Miguel Island (Azores, Portugal), started in the year 1782 as an enchanting fishpond garden, strategically positioned in front of the summer house belonging to the esteemed Thomas Hickling, the American vice-consul. Soon this garden was enlarged and embellished with species from several continents. This tradition continued during all the 19th century with the Viscount Duarte Borges da Câmara Medeiros (1848-1872) and his son the Marquis António Borges Medeiros Dias da Câmara e Sousa (1872-1913). In 1933, the 12 hectares property was acquired by the Terra Nostra Society, led by Vasco Bensaude and increased to 12.5 hectares. In 1935, the current Terra Nostra Garden Hotel was inaugurated and, two years later, the Terra Nostra Society reopened the botanical garden attached to the hotel, now called Terra Nostra Garden. Beginning in 1982, the Head Gardener embarked on a transformative journey, dedicating his expertise to the meticulous renovation and expansion of numerous botanical collections nestled within the garden's enchanting landscapes. Amongst the remarkable transformations, the revered camellias collection received special attention, as it underwent a comprehensive rejuvenation process under his skilful guidance. The recent publication of a global digital dataset of Camellia names provides the opportunity to publish the dataset of Camellia species, hybrids and its cultivars currently cultivated at Terra Nostra Garden with their validated names. New information: In June 2023, a total of 669 Camellia phenotypes were identified across the 12.5 hectares of Terra Nostra Garden. These phenotypes include 38 species, 178 hybrids and 637 cultivars. Camelliajaponica represents 81.7% of the 459 species cultivars, while C. x williamsii accounts for 32% of 178 hybrid cultivars. The most prevalent genotypes in Camellia hybrids with known parentage are those of C.japonica, C.saluenensis and C.reticulata present respectively in 64.1%, 45.5% and 37.9% of the hybrids. Regarding cultivar registration, 46.9% were registered in the US, followed by 13% from Japan and 10.8% from Portugal. Although the most ancient cultivar registered growing at the garden is Camelliareticulata Lindl. 'Damanao' from 1621, the majority (69.4%) of cultivars in the garden were registered in the 20th century, followed by the 19th century cultivars (20.7%). One cultivar, Camellia 'Patrícia Bensaude Fernandes', was produced and registered specifically by this garden.

17.
Cell Rep Med ; 3(10): 100763, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36198307

RESUMO

Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Estado Pré-Diabético/diagnóstico , Proteômica , Glucagon/metabolismo , Proteoma/metabolismo , Estudos Transversais , Insulina/genética , Redes e Vias Metabólicas/genética , Colesterol
18.
Metabolism ; 137: 155335, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272468

RESUMO

BACKGROUND: Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS: Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS: Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION: Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Hipotálamo , Masculino , Camundongos , Animais , Olanzapina/metabolismo , Olanzapina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Hipotálamo/metabolismo , Termogênese/fisiologia , Peso Corporal , Metabolismo Energético , Aumento de Peso , Tecido Adiposo Marrom/metabolismo
19.
Endocr Connect ; 11(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904227

RESUMO

Purpose: In patients with type 2 diabetes mellitus (T2DM), Roux-en-Y gastric bypass (RYGB) leads to beneficial metabolic adaptations, including enhanced incretin secretion, beta-cell function, and systemic insulin sensitivity. We explored the impact of RYGB on pituitary, pancreatic, gut hormones, and cortisol responses to parenteral and enteral nutrient stimulation in patients with obesity and T2DM with repeated sampling up to 2 years after intervention. Methods: We performed exploratory post hoc analyses in a previously reported randomized trial. Levels of adrenocorticotropic hormone (ACTH), cortisol, growth hormone (GH), glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY), ACTH, insulin, and glucagon were measured in 13 patients with T2DM and obesity at four different visits: before and 4, 24, and 104 weeks after RYGB; and in three sequential conditions on the same day: fasting, intravenous arginine challenge, and OGTT. Results: RYGB surprisingly induced a rise in ACTH, cortisol, and GH levels upon an oral glucose load, together with enhanced GLP-1 and PYY responses. Fasting and post-arginine GH levels were higher after RYGB, whereas insulin, glucagon, GLP-1, GIP, and cortisol were lower. These endocrine adaptations were seen as early as 4 weeks after surgery and were maintained for up to 2 years. Conclusion: These findings indicate adaptations of glucose sensing mechanisms and responses in multiple endocrine organs after RYGB, involving the gut, pancreatic islets, the pituitary gland, the adrenals, and the brain.

20.
Lab Med ; 53(5): e129-e133, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150274

RESUMO

OBJECTIVE: Research has shown that RNA extraction from adipose tissue (AT) is challenging because of high lipid content and low RNA quantity. We compared a traditional RNA extraction with a column-based method in human AT to evaluate RNA quantity and quality. MATERIALS AND METHODS: Human subcutaneous AT (n = 9) was collected through needle biopsy, and RNA was extracted using the phenol-chloroform traditional method and the RNeasy Lipid Tissue Mini Kit column-based method. The RNA quantity, quality, integrity, and expression of key AT genes were assessed. RESULTS: We found that the RNA quantity and integrity were reduced by 40% and 15-20%, respectively, using the column-based method compared to the traditional method, but the findings were not statistically significant. The column-based method showed a higher 260/280 ratio (~2.0) compared to the traditional method (~1.8) (P <.05), suggesting lower amounts of contaminants. The expression of AT genes was comparable between methods. CONCLUSION: The traditional extraction method provides adequate RNA yield and integrity compared to the column-based method, which is an advantage when AT specimens are small.


Assuntos
Tecido Adiposo , RNA , Humanos , Lipídeos , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...