Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 84: 127446, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615498

RESUMO

Osteoporosis is associated with an imbalance in bone formation, with certain drugs used in disease treatment being implicated in its development. Supplementation with trace elements may contribute to bone regeneration, offering an alternative approach by enhancing bone mineral density (BMD) and thereby thwarting the onset of osteoporosis. This review aims to assess the mechanisms through which trace elements such as copper (Cu), iron (Fe), selenium (Se), manganese (Mn), and zinc (Zn) are linked to increased bone mass, thus mitigating the effects of pharmaceuticals. Our findings underscore that the use of drugs such as aromatase inhibitors (AIs), proton pump inhibitors (PPIs), antiretrovirals, glucocorticoids, opioids, or anticonvulsants can result in decreased BMD, a primary contributor to osteoporosis. Research indicates that essential elements like Cu, Fe, Se, Mn, and Zn, through various mechanisms, can bolster BMD and forestall the onset of the disease, owing to their protective effects. Consequently, our study recommends a minimum daily intake of these essential minerals for patients undergoing treatment with the aforementioned drugs, as the diverse mechanisms governing the effects of trace elements Cu, Fe, Mn, Se, and Zn facilitate bone remodeling.


Assuntos
Osteoporose , Oligoelementos , Humanos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Oligoelementos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
2.
Biol Trace Elem Res ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803188

RESUMO

Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aß). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aß. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aß. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.

3.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674961

RESUMO

Opioid drugs have analgesic properties used to treat chronic and post-surgical pain due to descending pain modulation. The use of opioids is often associated with adverse effects or clinical issues. This study aimed to evaluate the toxicity of opioids by exposing the neuroblastoma cell line (SH-SY5Y) to 0, 1, 10, and 100 µM oxycodone and naloxone for 24 h. Analyses were carried out to evaluate cell cytotoxicity, identification of cell death, DNA damage, superoxide dismutase (SOD), glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities, in addition to molecular docking. Oxycodone and naloxone exposure did not alter the SH-SY5Y cell viability. The exposure to 100 µM oxycodone and naloxone significantly increased the cells' DNA damage score compared to the control group. Naloxone exposure significantly inhibited AChE, GST, and SOD activities, while oxycodone did not alter these enzymes' activities. Molecular docking showed that naloxone and oxycodone interact with different amino acids in the studied enzymes, which may explain the differences in enzymatic inhibition. Naloxone altered the antioxidant defenses of SH-SY5Y cells, which may have caused DNA damage 24 h after the exposure. On the other hand, more studies are necessary to explain how oxycodone causes DNA damage.


Assuntos
Neuroblastoma , Oxicodona , Humanos , Oxicodona/efeitos adversos , Naloxona/farmacologia , Acetilcolinesterase , Simulação de Acoplamento Molecular , Constipação Intestinal/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Linhagem Celular , Superóxido Dismutase , Preparações de Ação Retardada/uso terapêutico , Combinação de Medicamentos
4.
Artigo em Inglês | MEDLINE | ID: mdl-36294082

RESUMO

Proton pump inhibitors (PPIs) can directly interfere with osteoclastic function, induce hypergastrinemia, and inhibit calcium absorption, leading to reduced bone mineral density (BMD), a measure of bone metabolism that may be associated with the risk of fractures. The current study involves a systematic review and meta-analysis aimed at assessing the relationship between prolonged use of PPI drugs and fractures in menopausal women. A systematic search and meta-analysis were performed on PubMed, Scopus, and Science Direct databases according to PRISMA guidelines. Two independent reviewers analyzed the articles. The five articles found in the databases, which met the eligibility criteria, covered participants who were menopausal women aged between 56 and 78.5 years, using or not using a PPI for a minimum of 12 months. All studies showed an increase in the rate of fractures related to using PPIs, as an outcome. Prolonged use of PPIs in menopausal women can affect bone metabolism and cause fractures. However, other factors, such as the use of other classes of drugs, obesity, low weight, poor diet, replacement hormones, and comorbidities, should also be considered for assessing the risk of fractures.


Assuntos
Fraturas Ósseas , Inibidores da Bomba de Prótons , Feminino , Humanos , Pré-Escolar , Criança , Inibidores da Bomba de Prótons/efeitos adversos , Densidade Óssea , Cálcio , Fraturas Ósseas/epidemiologia , Menopausa , Hormônios
5.
Nutrients ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956381

RESUMO

Elevated levels of oxidative stress could cause and aggravate Alzheimer's disease (AD). Selenium (Se) is a trace element with antioxidant and anti-inflammatory activity with neuroprotective effects. To evaluate the effects of Se supplementation in patients with AD or mild cognitive impairment (MCI) through a systematic review and meta-analysis, data were searched and collected from four electronic databases, including clinical trial studies published until December 2020, following the PRISMA guidelines. Statistical analysis was performed by RevMan, and the risk of bias was assessed using the Rob 2 tool. A total of 1350 scientific papers were collected, and following evaluation 11 papers were included in the systematic review and 6 of these were used in the meta-analysis. Studies that evaluated only Se supplementation observed an improvement in Se levels, glutathione peroxidase (GPX) activity, and in some cognitive tests in MCI patients; similarly, improvement in Se levels and mini-mental score was also observed in AD patients. Regarding supplementation of Se plus other nutrients, improvement in cognitive tests was observed in both AD and MCI patients. Therefore, Se supplementation is a good alternative for patients with AD and MCI for improving Se levels and GPX activity. More detailed studies are required to further evaluate the effects of Se on the cognitive deficit and oxidative stress associated with AD and MCI.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Selênio , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Suplementos Nutricionais , Humanos
6.
Environ Sci Pollut Res Int ; 29(29): 43435-43447, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35386084

RESUMO

As well as a lead-related environmental factor, genetic factors could also corroborate important changes in intelligence quotient (IQ) through single-nucleotide polymorphisms. Thus, a systematic review was carried out to evaluate the possible influence of polymorphism on blood Pb levels and IQ points in pediatric patients (0-19 years old). Following the PRISMA guideline, the studies were systematically collected on PubMed, Scopus, and Embase databases. Six genes (transferrin (TF); glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A); glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B); dopamine receptor D2/ankyrin repeat and kinase domain containing 1 ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1); aminolevulinate dehydratase (ALAD); vitamin D receptor (VDR)) were found in six selected articles. In these genes, 11 single-nucleotide polymorphisms were searched and six different types of variations (missense variant, intron variant, synonymous variant, stop, stop gained) were observed. Due to the few studies in the literature, there is no conclusive data to point out that there is a direct relationship between polymorphisms, Pb levels, and reduction of IQ points.


Assuntos
Chumbo , N-Metilaspartato , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Adulto Jovem , Genótipo , Glutamatos/genética , N-Metilaspartato/genética , Nucleotídeos , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...