Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 10(47): 4840-4856, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31448051

RESUMO

Human glioblastoma cells are strikingly refractory to ATP-stimulated, P2X7 receptor (P2X7R)-mediated cytotoxicity. To elucidate the mechanistic basis of this feature, we investigated P2X7R-dependent responses in wild type and P2X7R-transfected U138 cells. Mouse GL261 glioma cells were used as an additional control. Here, we report that wild type U138 glioma cells expressed the P2X7R to very low level. Contrary to human U138 cells, mouse GL261 cells showed strong P2X7R expression and P2X7R-dependent responses. Transfection of wild type P2RX7 into U138 cells fully restored P2X7R-dependent responses. P2RX7 transfection conferred a negligible in vitro growth advantage to U138 cells, while strongly accelerated in vivo growth. In silico analysis showed that the P2RX7 gene is seldom mutated in specimens from glioblastoma multiforme (GBM) patients. These observations suggest that the P2X7R might be an important receptor promoting GBM growth.

2.
Neurosci Bull ; 34(5): 827-832, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29651705

RESUMO

Drugs that lack the ability to cross the blood-brain barrier (BBB) need to be placed directly into the central nervous system. Our laboratory studies the involvement of the glutamatergic system in the aggressiveness of glioma, and some ligands of glutamate receptors cannot permeate the BBB. Here, glioma-implanted rats were treated by a technique that delivers ligands directly into the cerebrospinal fluid by puncture into the cisterna cerebellomedullaris. Rats were anesthetized and fixed in a rodent stereotactic device. The head was gently tilted downwards at an angle that allowed exposure of the cisterna. Injection into the cisterna was done freehand using a gingival needle coupled to a microsyringe. The efficiency of intracisternal injection was demonstrated using a methylene blue solution. This type of injection is adaptable for any rodent model using small volumes of a variety of other drugs, and is an interesting method for neuroscience studies.


Assuntos
Fármacos do Sistema Nervoso Central/administração & dosagem , Líquido Cefalorraquidiano , Anestesia , Animais , Cisterna Magna , Meios de Contraste , Fármacos Atuantes sobre Aminoácidos Excitatórios/administração & dosagem , Glioma/tratamento farmacológico , Azul de Metileno , Modelos Animais , Ratos Wistar
3.
Oncotarget ; 8(13): 22279-22298, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28212543

RESUMO

Metabotropic glutamate receptors (mGluR) are predominantly involved in maintenance of cellular homeostasis of central nervous system. However, evidences have suggested other roles of mGluR in human tumors. Aberrant mGluR signaling has been shown to participate in transformation and maintenance of various cancer types, including malignant brain tumors. This review intends to summarize recent findings regarding the involvement of mGluR-mediated intracellular signaling pathways in progression, aggressiveness, and recurrence of malignant gliomas, mainly glioblastomas (GBM), highlighting the potential therapeutic applications of mGluR ligands. In addition to the growing number of studies reporting mGluR gene or protein expression in glioma samples (resections, lineages, and primary cultures), pharmacological blockade in vitro of mGluR1 and mGluR3 by selective ligands has been shown to be anti-proliferative and anti-migratory, decreasing activation of MAPK and PI3K pathways. In addition, mGluR3 antagonists promoted astroglial differentiation of GBM cells and also enabled cytotoxic action of temozolomide (TMZ). mGluR3-dependent TMZ toxicity was supported by increasing levels of MGMT transcripts through an intracellular signaling pathway that sequentially involves PI3K and NF-κB. Further, continuous pharmacological blockade of mGluR1 and mGluR3 have been shown to reduced growth of GBM tumor in two independent in vivo xenograft models. In parallel, low levels of mGluR3 mRNA in GBM resections may be a predictor for long survival rate of patients. Since several Phase I, II and III clinical trials are being performed using group I and II mGluR modulators, there is a strong scientifically-based rationale for testing mGluR antagonists as an adjuvant therapy for malignant brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Glioma/tratamento farmacológico , Terapia de Alvo Molecular , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Glioma/metabolismo , Glioma/patologia , Humanos
4.
Mol Neurobiol ; 53(2): 1065-1079, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579384

RESUMO

Hyperprolinemias are inherited disorder of proline (Pro) metabolism. Patients affected may present neurological manifestations, but the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering that the astrocytes are important players in neurological disorders, the aim of the present work was to study the effects 1 mM Pro on glutamatergic and inflammatory parameters in cultured astrocytes from cerebral cortex of rats, exploring some molecular mechanisms underlying the disrupted homeostasis of astrocytes exposed to this toxic Pro concentration. We showed that cortical astrocytes of rats exposed to 1 mM Pro presented significantly elevated extracellular glutamate and glutamine levels, suggesting glutamate excitotoxicity. The excess of glutamate elicited by Pro together with increased glutamate uptake and upregulated glutamine synthetase (GS) activity supported misregulated glutamate homeostasis in astrocytic cells. High Pro levels also induced production/release of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6. We also evidenced misregulation of cholinergic anti-inflammatory system with increased acetylcholinesterase (AChE) activity and decreased acetylcholine (ACh) levels, contributing to the inflammatory status in Pro-treated astrocytes. Our findings highlighted a crosstalk among disrupted glutamate homeostasis, cholinergic mechanisms, and inflammatory cytokines, since ionotropic (DL-AP5 and CNQX) and metabotropic (MCPG and MPEP) glutamate antagonists were able to restore the extracellular glutamate and glutamine levels; downregulate TNFα and IL6 production/release, modulate GS and AChE activities; and restore ACh levels. Otherwise, the non-steroidal anti-inflammatory drugs nimesulide, acetylsalicylic acid, ibuprofen, and diclofenac sodium decreased the extracellular glutamate and glutamine levels, downregulated GS and AChE activities, and restored ACh levels in Pro-treated astrocytes. Altogether, our results evidence that the vulnerability of metabolic homeostasis in cortical astrocytes might have important implications in the neurotoxicity of Pro.


Assuntos
Astrócitos/metabolismo , Colina/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Prolina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Citocinas/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Ratos Wistar
5.
Neurochem Res ; 39(5): 973-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24706093

RESUMO

Several researchers have recently used C6 cells to evaluate functional properties of high-affinity glutamate transporters. However, it has been demonstrated that this lineage suffers several morphological and biochemical alterations according to the number of passages in culture. Currently, there are no reports showing whether functional properties of high-affinity glutamate transporters comply with these sub culturing-dependent modifications. The present study aimed to compare the functional properties of high-affinity glutamate transporters expressed in early (EPC6) and late (LPC6) passage C6 cells through a detailed pharmacological and biochemical characterization. Between 60-180 min of L-[(3)H]glu incubation, LPC6 presented an intracellular [(3)H] 55% lower than EPC6. Both cultures showed a time-dependent increase of intracellular [(3)H] reaching maximal levels at 120 min. Cultures incubated with D-[(3)H]asp showed a time-dependent increase of [(3)H] until 180 min. Moreover, LPC6 have a D-[(3)H]asp-derived intracellular [(3)H] 30-45% lower than EPC6 until 120 min. Only EAAT3 was immunodetected in cultures and its total content was equal between them. PMA-stimulated EAAT3 trafficking to membrane increased 50% of L-[(3)H]glu-derived intracellular [(3)H] in EPC6 and had no effect in LPC6. LPC6 displayed characteristics that resemble senescence, such as high ß-Gal staining, cell enlargement and increase of large and regular nuclei. Our results demonstrated that LPC6 exhibited glutamate uptake impairment, which may have occurred due to its inability to mobilize EAAT3 to cell membrane. This profile might be related to senescent process observed in this culture. Our results suggest that LPC6 cells are an inappropriate glial cellular model to investigate the functional properties of high-affinity glutamate transporters.


Assuntos
Ácido Aspártico/metabolismo , Senescência Celular/fisiologia , Ácido Glutâmico/metabolismo , Animais , Glioma/metabolismo , Ratos Wistar , Trítio , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...