Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503396

RESUMO

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Assuntos
Antibacterianos , Proteínas de Bactérias , Cumarínicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo
2.
J Basic Microbiol ; 64(2): e2300558, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110852

RESUMO

Efflux pumps are proteins capable of expelling antibiotics from bacterial cells, have emerged as a major mechanism of bacterial resistance. In the ongoing pursuit to overcome and reduce bacterial resistance, novel substances are being explored as potential efflux pump inhibitors. Meldrum's acid, a synthetic molecule widely studied for its role in synthesizing bioactive compounds, holds promise in this regard. Therefore, the objective of this study is to evaluate the antibacterial activity of three derivatives of Meldrum's acid and assess their ability to inhibit efflux mechanisms, employing both in silico and in vitro approaches. The antibacterial activity of the derivatives was assessed using a broth microdilution testing method. Surprisingly, the derivatives did not exhibit direct antibacterial activity on their own. However, they displayed a significant effect in enhancing the efficacy of antibiotics, suggesting a potential role in potentiating their effects. Furthermore, fluorescence emission assays using ethidium bromide indicated that the derivatives could potentially block efflux pumps, as they exhibited fluorescence levels comparable to the positive control. To further investigate their inhibitory capacity, molecular docking studies were conducted in silico, revealing binding interactions similar to ciprofloxacin and carbonyl cyanide 3-chlorophenylhydrazone, known efflux pump inhibitors. These findings highlight the potential of Meldrum's acid derivatives as effective inhibitors of efflux pumps. By targeting these mechanisms, the derivatives offer a promising avenue to enhance the effectiveness of antibiotics and combat bacterial resistance. This study underscores the importance of exploring novel strategies in the fight against bacterial resistance and provides valuable insights into the potential of Meldrum's acid derivatives as efflux pump inhibitors. Further research and exploration in this field are warranted to fully exploit their therapeutic potential.


Assuntos
Antibacterianos , Proteínas de Bactérias , Simulação de Acoplamento Molecular , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Dioxanos , Testes de Sensibilidade Microbiana
3.
Microb Pathog ; 182: 106246, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454945

RESUMO

The discovery of antibiotics has significantly transformed the outcomes of bacterial infections in the last decades. However, the development of antibiotic resistance mechanisms has allowed an increasing number of bacterial strains to overcome the action of antibiotics, decreasing their effectiveness against infections they were developed to treat. This study aimed to evaluate the antibacterial activity of synthetic coumarins Staphylococcus aureus in vitro and analyze their interaction with the MepA efflux pump in silico. The Minimum Inhibitory Concentration (MIC) determination showed that none of the test compounds have antibacterial activity. However, all coumarin derivatives decreased the MIC of the standard efflux inhibitor ethidium bromide, indicating antibacterial synergism. On the other hand, the C14 derivative potentiated the antibacterial activity of ciprofloxacin against the resistant strain. In silico analysis showed that C9, C11, and C13 coumarins showed the most favorable interaction with the MepA efflux pump. Nevertheless, due to the present in silico and in vitro investigation limitations, further experimental research is required to confirm the therapeutic potential of these compounds in vivo.


Assuntos
Cumarínicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Cumarínicos/farmacologia , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo
4.
Microb Pathog ; 180: 106147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169312

RESUMO

This study aimed to evaluate the antibiotic effects of the fixed oils of Acrocomia aculeata (FOAA) and Syagrus cearenses (FOSC) against the bacterial strains and the fungi strains of the genus Candida spp. The method of serial microdilution using different concentrations was used for measuring the individual biological activity of the fixed oils. The fixed oil of A. aculeata showed the presence of oleic acid (24.36%), while the oil of S. cearensis displayed the content of myristic acid (18.29%), compounds detected in high concentration. The combination FOAA + Norfloxacin, and FOSC + Norfloxacin showed antibacterial activity against E. coli and S. aureus strains, demonstrating possible synergism and potentiation of the antibiotic action against multidrug-resistant strains. The combination FOAA + Fluconazole displayed a significant effect against Candida albicans (IC50 = 15.54), C. krusei (IC50 = 78.58), and C. tropicalis (IC50 = 1588 µg/mL). Regarding FOSC + Fluconazole, it was also observed their combined effect against the strains of C. albicans (IC50 = 3385 µg/mL), C. krusei (IC50 = 26.67 µg/mL), and C. tropicalis (IC50 = 1164 µg/mL). The findings of this study showed a significant synergism for both fixed oils tested when combined with the antibiotic.


Assuntos
Anti-Infecciosos , Arecaceae , Fluconazol/farmacologia , Arecaceae/química , Norfloxacino/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Candida albicans , Óleos de Plantas/farmacologia , Antibacterianos/farmacologia , Candida tropicalis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química
5.
Fundam Clin Pharmacol ; 37(2): 316-323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36205463

RESUMO

The problem of antibiotic resistance by bacteria threatens human health. Therefore, studies in this area seek alternatives to circumvent it. The study with coumarins and eugenol has already proven that these classes of compounds act against bacteria. In this same aspect, exposure to LED also shows a bactericidal effect. Seeking a possible enhancement of this effect, the present work studied coumarins derived from eugenol in association with LED to investigate the bactericidal effect. Four compounds were tested. For this, minimum inhibitory concentrations (MICs) and modulation with three antibiotics against Escherichia coli and Staphylococcus aureus bacteria were determined. To test the behavior of the activity against exposure to LED, the plates were exposed for 20 min to blue light, 415 nm and then incubated at 37°C for 24 h. For control, duplicates were made, and one of them did not undergo this exposure. C1 exhibited better activity against S. aureus, as synergism prevailed under the conditions tested. C3 and C4 were promising against E. coli as they showed synergism in association with the three antibiotics both with and without LED exposure. Thus, the compounds showed bactericidal activity, and LED was shown to enhance synergism.


Assuntos
Eugenol , Staphylococcus aureus , Humanos , Eugenol/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Cumarínicos/farmacologia
6.
Microb Pathog ; 173(Pt A): 105827, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243385

RESUMO

Eugenol has already had its pharmacological properties elucidated in previous studies, including antibacterial and antifungal properties. Based on such information, this study aimed to evaluate the antibacterial and modulatory activity of coumarin compounds prepared from dihydroeugenol and to associate them with blue LED light for the same activity. For this study, five of the substances available: compound 1 (C1), 8-methoxy-2-oxo-6-propyl-2H-chromen-3-carboxylic acid, compound (C2), 3-(hydroxy(4-nitrophenyl)methyl)-8- methoxy-6-propyl-2H-chromen-2-one, compound 7 (C3), 8-hydroxy-3-(4-nitrobenzoyl)-6-propyl-2H-chromen-2-one, compound 8 (C4), 3-(4-aminobenzoyl)-8-methoxy-6-propyl-2H-chromen-2-one and Compound 9 (C5), 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-chromen-2-one 2-one. To determine the MIC, the broth microdilution technique was used. The products were evaluated for their potential to modulate the activity of antibiotics. Afterward, the plates were submitted to blue LED light for 20 min. When exposed to LED, C3 exhibited a decrease in MIC for SA ATCC and C5 for EC ATCC, with an average of 645.08 µg/mL for both cases. C2 and C4 exhibited synergism in a greater number of situations. However, C3 showed promising activity against S. aureus. C1 and C2 already acted better against E. coli, with the difference that C1 acted better against these bacteria when associated with LED. In general, the compounds studied here exhibited good antibacterial activity when associated with LED.


Assuntos
Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias , Luz , Testes de Sensibilidade Microbiana
7.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297389

RESUMO

Microbial resistance has become a worrying problem in recent decades after the abusive use of antibiotics causing the selection of resistant microorganisms. In order to circumvent such resistance, researchers have invested efforts in the search for promising natural substances, such as essential oils. Thus, the objective of this work was to determine the chemical composition of the essential oil of Acritopappus confertus leaves, to evaluate its intrinsic effect and its effects in combination with drugs against pathogenic fungi and bacteria, in addition to verifying the inhibition of virulence in Candida strains. To this end, the oil was verified by gas chromatography coupled with mass spectrometry (GC/MS). Candida strains were used for antifungal assays by means of the serial microdilution technique, in order to determine the average inhibitory concentration (IC50), and for the modification assays, sub-inhibitory concentrations (MIC/8) were used. Finally, the natural product's ability to inhibit the formation of filamentous structures was evaluated. In antibacterial tests, the MIC of the oil against strains of Staphylococcus aureus and Escherichia coli and its modifying effects in association with gentamicin, erythromycin, and norfloxacin were determined. The major constituent of the essential oil was the monoterpene myrcene (54.71%). The results show that the essential oil has an antifungal effect, with C. albicans strains being the most susceptible. Furthermore, the oil can potentiate the effect of fluconazole against strains of C. tropicalis and C. albicans. Regarding its effect on micromorphology, the oil was also able to inhibit the filaments in all strains. In combination with antibiotics, the oil potentiated the drug's action by reducing the MIC against E. coli and S. aureus. It can be concluded that the essential oil of A. confertus has potential against pathogenic fungi and bacteria, making it a target for the development of an antimicrobial drug.

8.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630757

RESUMO

One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.


Assuntos
Óleos Voláteis , Syzygium , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus
9.
Chem Phys Lipids ; 245: 105204, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398337

RESUMO

Liposomes, in addition to providing greater efficacy to antibiotics, decrease toxicity and increase selectivity. This work has as main objectives the sensitization of the need to solve bacterial resistance to antibiotics, addressing the potential of antibiotics carried by liposome. In the preparation of the liposomes, the lipids dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylserine (DPPS), and cholesterol (COL) with > 99% purity were used. The Staphylococcus aureus strains used were SA-1199B, which expresses the NorA gene encoding the NorA efflux protein, which expels hydrophilic fluoroquinolones and other drugs intercalating DNA dyes, and the wild strain SA-1199. The liposomes associated with antibiotics in the wild type of strain SA-1199 and the carrier strain of pump 1199B, had a better representation of growth inhibition than the wild type strain SA-1199. Given the potential for inhibition of efflux pump seen in the results, we highlight the creation of new drugs or alteration of existing drugs. They are not recognized by the efflux pumps and removed from the target cell.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
10.
Arch Microbiol ; 204(1): 63, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940944

RESUMO

The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for hospital infections. Because of that many strategies are being developed to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are found in parts of plants and can be found, for example, in the roots, leaves, bark, among others, but are mainly found as petal pigments, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities. This study aimed to evaluate the ability of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one to reverse the efflux pump resistance, present in the bacteria S. aureus 1199B and S. aureus K2068. The synthetic chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was able to synergistically modulate the antibiotic Ciprofloxacino and Ethidium Bromide against the bacterial strain S. aureus K2068, and with the antibiotic Norfloxacino against the strain 1199B. Thus, it is suggested that this chalcone may be acting by inhibiting the efflux pump mechanism of these bactéria. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalocne did not present a severe risk of toxicity, such as genetic mutation or cardiotoxicity. Molecular docking showed that the chalcone could act as a competitive inhibitor of the MepA efflux pump, as at hinders the binding of other substrates, such as EtBr.


Assuntos
Chalcona , Chalconas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chalcona/farmacologia , Chalconas/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus/metabolismo
11.
J Bioenerg Biomembr ; 53(4): 489-498, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34159523

RESUMO

Undue exposure to antimicrobials has led to the acquisition and development of sophisticated bacterial resistance mechanisms, such as efflux pumps, which are able to expel or reduce the intracellular concentration of various antibiotics, making them ineffective. Therefore, inhibiting this mechanism is a promising way to minimize the phenomenon of resistance in bacteria. In this sense, the present study sought to evaluate the activity of the Carvacrol (CAR) and Thymol (THY) terpenes as possible Efflux Pump Inhibitors (EPIs), by determining the Minimum Inhibitory Concentration (MIC) and the association of these compounds in subinhibitory concentrations with the antibiotic Norfloxacin and with Ethidium Bromide (EtBr) against strains SA-1199 (wild-type) and SA-1199B (overexpresses NorA) of Staphylococcus aureus. In order to verify the interaction of the terpenes with the NorA efflux protein, an in silico molecular modeling study was carried out. The assays used to obtain the MIC of CAR and THY were performed by broth microdilution, while the Efflux Pump inhibitory test was performed by the MIC modification method of the antibiotic Norfloxacin and EtBr. docking was performed using the Molegro Virtual Docker (MVD) program. The results of the study revealed that CAR and THY have moderate bacterial activity and are capable of reducing the MIC of Norfloxacin antibiotic and EtBr in strains of S. aureus carrying the NorA efflux pump. The docking results showed that these terpenes act as possible competitive NorA inhibitors and can be investigated as adjuvants in combined therapies aimed at reducing antibiotic resistance.


Assuntos
Cimenos/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Norfloxacino/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Timol/uso terapêutico , Cimenos/farmacologia , Norfloxacino/farmacologia , Timol/farmacologia
12.
Biomed Pharmacother ; 140: 111768, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058442

RESUMO

A large number of infections are caused by multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. Because of that many strategies are being developed in order to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are known as α, ß-unsaturated ketones, characterized by having the presence of two aromatic rings that are joined by a three-carbon chain, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities, which include anticancer, anti-inflammatory, antioxidants, antimicrobials, anti-tuberculosis, anti-HIV, antimalarial, anti-allergic, antifungal, antibacterial, and antileishmanial. The objective of this work was evaluate the antibacterial and antibiotic modifying activity of chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one against the bacteria Staphylococcus aureus carrying a NorA and MepA efflux pump. The results showed that chalcone was able to synergistically modulate the action of Norfloxacin and Ethidium Bromide against the bacteria Staphylococcus aureus 1199B and K2068, respectively. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalcone did not present a severe risk of toxicity such as genetic mutation or cardiotoxicity, constituting a good pharmacological active ingredient.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Chalconas/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacocinética , Proteínas de Bactérias/antagonistas & inibidores , Chalconas/farmacocinética , Etídio/farmacologia , Humanos , Absorção Intestinal , Testes de Sensibilidade Microbiana , Modelos Biológicos , Simulação de Acoplamento Molecular , Norfloxacino/farmacologia , Staphylococcus aureus/metabolismo
13.
Arch Microbiol ; 203(6): 3551-3555, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33942156

RESUMO

The antibacterial activity of the monoterpene estragole was evaluated against two strains of bacteria with an efflux pump mechanism, which are Staphylococcus aureus 1199B and S. aureus K2068, which have a NorA and MepA pump, respectively. For that, the methodology proposed by CLSI with modifications was followed, and to evaluate the reversal of the efflux pump, subinhibitory concentrations (MIC/8) of estragole and standard pump inhibitors, CCCP and Chlorpromazine were used and it was verified whether they managed to modulate the action of Norfloxacin, Ciprofloxacin and Ethidium Bromide, an indicator of an efflux pump. It was observed that estragole positively modulated norfloxacin and ethidium bromide against the strain of S. aureus 1199B and that it also managed to reduce the MIC of ethidium bromide against the strain of S. aureus K2068. In the non-clinical acute toxicity tests with estragole, the animals treated with the dose of 625 mg/kg/v.o. showed no clinical signs of toxicity, according to the parameters evaluated. These results are promising, since it places estragole as a possible inhibitor of the efflux pump, thus managing to inhibit this mechanism of action in the strains tested.


Assuntos
Derivados de Alilbenzenos , Anisóis , Staphylococcus aureus , Derivados de Alilbenzenos/farmacologia , Animais , Anisóis/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
14.
Eur J Pharm Sci ; 160: 105753, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581258

RESUMO

This study aimed to evaluate the antibacterial activity and to verify, in silico and in vitro, the inhibition of efflux mechanisms using a series of synthesized 1,8-naphthyridines sulfonamides against Staphylococcus aureus strains carrying MepA efflux pumps. The chemical synthesis occurred through the thermolysis of the Meldrum's acid adduct. The sulfonamide derivatives were obtained by the sulfonylation of 2-amino-5­chloro-1,8-naphthyridine with commercial benzenesulfonyl chloride. Antibacterial activity was assessed by the broth microdilution test. Efflux pump inhibitory capacity was evaluated in silico by molecular docking and in vitro by analyzing synergistic effects on ciprofloxacin and ethidium bromide (EtBr) and by EtBr fluorescence emission assays. The following 1,8-naphthyridines were synthesized: 4-methyl-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10a); 2,5-dichloro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10b); 4-fluoro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10c); 2,3,4-trifluoro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10d); 3-trifluoromethyl-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10e); 4­bromo-2,5-difluoro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10f). The 1,8-naphthyridines derivatives associated with sulfonamides did not show antibacterial activity. However, they showed a favorable pharmacokinetic profile with possible MepA efflux pump inhibitory action, demonstrated in molecular docking. In addition to the promising results in reducing the concentration of intracellular EtBr. 1,8-naphthyridines act as putative agents in the inhibitory action of the MepA efflux pump.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos , Naftiridinas , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Naftiridinas/farmacologia , Sulfonamidas/farmacologia
15.
J Glob Antimicrob Resist ; 24: 233-240, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385589

RESUMO

OBJECTIVE: Efflux pumps are transmembrane proteins associated with bacterial resistance mechanisms. Bacteria use these proteins to actively transport antibiotics to the extracellular medium, preventing the pharmacological action of these drugs. This study aimed to evaluate in vitro the antibacterial activity of 1,8-naphthyridines sulfonamides, as well as their ability to inhibit efflux systems of Staphylococcus aureus strains expressing different levels of the NorA efflux pump. METHODS: The broth microdilution test was performed to assess antibacterial activity. Efflux pump inhibition was evaluated in silico by molecular docking and in vitro by fluorometric tests, and the minimum inhibitory concentration (MIC) was determined. The MIC was determined in the association between 1,8-naphthyridine and norfloxacin or ethidium bromide. RESULTS: The 1,8-naphthyridines did not show direct antibacterial activity. However, they effectively reduced the MIC of multidrug-resistant bacteria by associating with norfloxacin and ethidium bromide, in addition to increasing the fluorescence emission. In silico analysis addressing the binding between NorA and 1,8-naphthyridines suggests that hydrogen bonds and hydrophilic interactions represent the interactions with the most favourable binding energy, corroborating the experimental data. CONCLUSION: Our data suggest that 1,8-naphthyridines sulfonamides inhibit bacterial resistance through molecular mechanisms associated with inhibition of the NorA efflux pump in S. aureus strains.


Assuntos
Naftiridinas , Staphylococcus aureus , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Naftiridinas/farmacologia , Staphylococcus aureus/metabolismo , Sulfonamidas/farmacologia
16.
Eur J Pharm Sci ; 158: 105695, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383131

RESUMO

Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4'-aminophenyl)-3-(phenyl)­prop-2-en-1-one (APCHAL), and (2E)-1-(4'-aminophenyl)-3-(4-chlorophenyl)­prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.


Assuntos
Chalcona , Chalconas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Chalconas/farmacologia , Escherichia coli/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/metabolismo
17.
Food Chem ; 337: 127776, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777574

RESUMO

Staphylococcus aureus is a Gram-positive bacterium responsible for a number of diseases and has demonstrated resistance to conventional antibiotics. This study aimed to evaluate the antibacterial activity of eugenol and its derivatives allylbenzene, 4-allylanisole, isoeugenol and 4-allyl-2,6-dimethoxyphenol against the S. aureus NorA efflux pump (EP) in association with norfloxacin and ethidium bromide. The antibacterial activity of the compounds was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC). A reduction in the MIC of ethidium bromide (a substrate for several efflux pumps) or norfloxacin was used as a parameter of EP inhibition. Molecular modeling studies were used to predict the 3D structure and analyze the interaction of selected compounds with the binding pocket of the NorA efflux pump. Except for 4-allylanisole and allylbenzene, the compounds presented clinically effective antibacterial activity. When associated with norfloxacin against the SA 1199B strain, 4-allyl-2,6-dimethoxyphenol eugenol and isoeugenol caused significant reduction in the MIC of the antibiotic, demonstrating synergistic effects. Similar effects were observed when 4-allyl-2,6-dimethoxyphenol, allylbenzene and isoeugenol were associated with ethidium bromide. Together, these findings indicate a potential inhibition of the NorA pump by eugenol and its derivatives. This in vitro evidence was corroborated by docking results demonstrating favorable interactions between 4-allyl-2,6-dimetoxypheno and the NorA pump mediated by hydrogen bonds and hydrophobic interactions. In conclusion, eugenol derivatives have the potential to be used in antibacterial drug development in strains carrying the NorA efflux pump.


Assuntos
Proteínas de Bactérias/metabolismo , Eugenol/análogos & derivados , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Staphylococcus aureus/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Etídio/farmacologia , Eugenol/metabolismo , Eugenol/farmacologia , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Norfloxacino/farmacologia , Staphylococcus aureus/efeitos dos fármacos
18.
Curr Microbiol ; 77(12): 3969-3977, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025183

RESUMO

Plants are natural sources of several bioactive substances, which have been found in extracts, secondary metabolites, and essential oils. Several biological activities have been attributed to essential oils as antiviral, insecticidal, antiparasitic, antioxidant, and antimicrobial. The indiscriminate use of antibiotics has increased the development of resistance mechanisms of microorganisms. Thus, search for efficient natural compounds with antimicrobial activity and low toxicity has increased, so essential oils have been a promising alternative for combating microbial infections. This study was carried out to investigate the seasonality effects on the infrared absorbance spectra, antibacterial activity, and antibiotic potentiating activity of essential oils from Vitex gardneriana leaves. Essential oils were extracted from V. gardneriana Schauer leaves the seasonal period from January to December 2016 and characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial effect of these oils and antibiotic potentiating activity, both determined by the minimum inhibitory concentration, were assessed using microtiter plates. For the first time, we present the use of infrared absorbance spectra of these essential oils and show the influence of seasonality on them. Synergistic effects were observed for the essential oils associated with the antibiotics tested (gentamicin, ampicillin, and ofloxacin). The main influence of seasonality on the infrared absorbance spectra of the essential oils of the V. gardneriana occurred in the June month (last month of the rainy season). In regard to antibacterial activity test, the essential oils of the V. gardneriana leaves did not show a direct effect on the strains tested. However, the essential oils when associated with the antibiotics showed variations in the minimum inhibitory concentration with the months of the seasonal period, indicating synergistic effects against Escherichia coli and Staphylococcus aureus bacterial resistance.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Vitex , Antibacterianos/farmacologia , Escherichia coli , Análise de Fourier , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
19.
Microb Pathog ; 147: 104268, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32574783

RESUMO

Naphthyridines represent a class of heterocyclic compounds formed by two condensed aromatic rings. This study aimed to evaluate the antibacterial activity and in vitro inhibition of efflux resistance mechanisms of a series of 1,8-naphthyridine sulfonamides against strains carrying Tet(K) and MsrA efflux pumps. The efflux pump inhibitory capacity was evaluated by analyzing synergistic effects between 1,8-naphthyridine sulfonamides and standard antibiotics, as well as ethidium bromide. The following 1,8-naphthyridines were used: 4-methyl-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Naph 1); 2,5-Dichloro-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Naph 2); 2,3,4-trifluoro-N-(5-chloro-1,8-naphthyridin-2-yl)benzenesulfonamide (Naph 7); 3-trifluoromethyl-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Naph 9). The 1,8-naphthyridine sulfonamide derivatives possessed a potential Tet(K) and MsrA efflux pump inhibitory action.


Assuntos
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Etídio , Testes de Sensibilidade Microbiana , Naftiridinas/farmacologia , Sulfonamidas/farmacologia
20.
Antibiotics (Basel) ; 9(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947642

RESUMO

Efflux pumps are proteins present in the plasma membrane of bacteria, which transport antibiotics and other compounds into the extracellular medium, conferring resistance. The discovery of natural efflux pump inhibitors is a promising alternative. α-Bisabolol is a sesquiterpene isolated from several plants such as Matricaria chamomilla L. and has important properties such as antibacterial and anti-inflammatory activity. Currently, the formation of inclusion complexes with ß-Cyclodextrin has been used for improving the physicochemical characteristics of the host molecule. This study evaluated the effect of α-Bisabolol, in isolation and in complexation with ß-Cyclodextrin, as TetK and NorA efflux pump inhibitors in Staphylococcus aureus strains. The minimum inhibitory concentration (MIC) was determined. Subsequently, inhibitory activity over the pumps was observed by an MIC reduction for the antibiotics, by using subinhibitory concentrations (MIC/8) in combination with tetracycline and norfloxacin. The MIC of the compounds was ≥1024 µg/mL. α-Bisabolol potentiated the action of tetracycline and reduced the MIC of norfloxacin to a clinically relevant concentration. The complexed substance showed synergism however, the effect of the isolated α-Bisabolol was superior to the complex. These results indicate α-Bisabolol is a potential substance to be used as an efflux pump inhibitor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...