Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(33): 23063-23075, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37529367

RESUMO

A simple low-energy method was used to obtain polymeric nanoparticles containing silk fibroin (SF), fatty butyl esters (oily phase) and the flavonoid naringenin. Experimental planning (Box-Behnken) was applied to investigate the optimal conditions for three factors (variation of the concentrations of SF, naringenin and fatty butyl ester) at three levels, with evaluation of particle size, polydispersity index (PDI) and zeta potential (ZP) as responses. The results showed that the polymeric particle was formed with sizes of 179.6 to 633.9 nm, PDI of 0.33 to 0.77 and ZP of -60.4 to -38.8 mV. The best responses under the optimized conditions (Nari-SF 9 and 15) were characterized through transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), visible ultraviolet (UV-vis) and fluorescence, which confirmed that coated nanoparticles had been obtained. It was shown that the nanoformulation had excellent stability, the bioavailability of naringenin had been improved through use of the biopolymer and high inhibition of the enzyme lipoxygenase had been achieved in vitro.

2.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014427

RESUMO

This work developd nanomaterials formulated from annatto seed oily extract (ASE), myristic acid (tetradecanoic acid), and their fatty acid esters. The annatto seed oily extract was obtained using only soybean oil (ASE + SO) and Brazil nut oil (ASE + BNO). The UV/VIS analysis of the oily extracts showed three characteristic peaks of the bixin molecule at 430, 456 and 486 nm. The lipid nanoparticles obtained using myristic acid and ASE + BNO or only BNO showed better results than the oil soybean extract, i.e., the particle size was <200 nm, PDI value was in the range of 0.2−0.3, and had no visual physical instability as they kept stable for 28 days at 4 °C. Lipid nanoemulsions were also produced with esters of myristic acid and ASE + BNO. These fatty acid esters significantly influenced the particle size of nanoemulsions. For instance, methyl tetradecanoate led to the smallest particle size nanoemulsions (124 nm), homogeneous size distribution, and high physical stability under 4 and 32 °C for 28 days. This work demonstrates that the chemical composition of vegetable oils and myristic acid esters, the storage temperature, the chain length of fatty acid esters (FAE), and their use as co-lipids improve the physical stability of lipid nanoemulsions and nanoparticles from annatto seed oily extract.


Assuntos
Bixaceae , Carotenoides , Extratos Vegetais , Sementes , Ácidos Graxos , Lipossomos , Ácido Mirístico , Nanopartículas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/química
3.
Pharmaceutics ; 11(6)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212993

RESUMO

Ucuùba fat is fat obtained from a plant found in South America, mainly in Amazonian Brazil. Due to its biocompatibility and bioactivity, Ucuùba fat was used for the production of ketoconazole-loaded nanostructured lipid carriers (NLC) in view of an application for the treatment of onychomycosis and other persistent fungal infections. The development and optimization of Ucuùba fat-based NLC were performed using a Box-Behnken design of experiments. The independent variables were surfactant concentration (% w/v), liquid lipids concentration (% w/v), solid lipids concentration (% w/v), while the outputs of interest were particle size, polydispersity index (PDI) and drug encapsulation efficiency (EE). Ucuùba fat-based NLC were produced and the process was optimized by the development of a predictive mathematical model. Applying the model, two formulations with pre-determined particle size, i.e., 30 and 85 nm, were produced for further evaluation. The optimized formulations were characterized and showed particle size in agreement to the predicted value, i.e., 33.6 nm and 74.6 nm, respectively. The optimized formulations were also characterized using multiple techniques in order to investigate the solid state of drug and excipients (DSC and XRD), particle morphology (TEM), drug release and interactions between the formulation components (FTIR). Furthermore, particle size, surface charge and drug loading efficiency of the formulations were studied during a one-month stability study and did not show evidence of significant modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...