Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(10): 3748-3754, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37869559

RESUMO

Integrated photonic platforms have proliferated in recent years, each demonstrating its unique strengths and shortcomings. Given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the strengths of different optical materials in one hybrid integrated platform. Silicon carbide is a material of great interest because of its high refractive index, strong second- and third-order nonlinearities, and broad transparency window in the visible and near-infrared range. However, integrating silicon carbide (SiC) has been difficult, and current approaches rely on transfer bonding techniques that are time-consuming, expensive, and lacking precision in layer thickness. Here, we demonstrate high-index amorphous silicon carbide (a-SiC) films deposited at 150 °C and verify the high performance of the platform by fabricating standard photonic waveguides and ring resonators. The intrinsic quality factors of single-mode ring resonators were in the range of Qint = (4.7-5.7) × 105 corresponding to optical losses between 0.78 and 1.06 dB/cm. We then demonstrate the potential of this platform for future heterogeneous integration with ultralow-loss thin SiN and LiNbO3 platforms.

2.
Appl Opt ; 62(29): 7589-7595, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855466

RESUMO

Detecting defects on diffraction gratings is crucial for ensuring their performance and reliability. Practical detection of these defects poses challenges due to their subtle nature. We perform numerical investigations and demonstrate experimentally the capability of coherent Fourier scatterometry (CFS) to detect particles as small as 100 nm and also other irregularities that are encountered usually on diffraction gratings. Our findings indicate that CFS is a viable tool for inspection of diffraction gratings.

3.
Light Sci Appl ; 12(1): 171, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433764

RESUMO

Quantum entanglement and squeezing have significantly improved phase estimation and imaging in interferometric settings beyond the classical limits. However, for a wide class of non-interferometric phase imaging/retrieval methods vastly used in the classical domain, e.g., ptychography and diffractive imaging, a demonstration of quantum advantage is still missing. Here, we fill this gap by exploiting entanglement to enhance imaging of a pure phase object in a non-interferometric setting, only measuring the phase effect on the free-propagating field. This method, based on the so-called "transport of intensity equation", is quantitative since it provides the absolute value of the phase without prior knowledge of the object and operates in wide-field mode, so it does not need time-consuming raster scanning. Moreover, it does not require spatial and temporal coherence of the incident light. Besides a general improvement of the image quality at a fixed number of photons irradiated through the object, resulting in better discrimination of small details, we demonstrate a clear reduction of the uncertainty in the quantitative phase estimation. Although we provide an experimental demonstration of a specific scheme in the visible spectrum, this research also paves the way for applications at different wavelengths, e.g., X-ray imaging, where reducing the photon dose is of utmost importance.

4.
Opt Lett ; 47(15): 3840-3843, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913328

RESUMO

We demonstrate that the sensitivity of nanoparticle detection on surfaces can be substantially improved by implementing synthetic optical holography (SOH) in coherent Fourier scatterometry (CFS), resulting in a phase-sensitive confocal differential detection technique that operates at very low power level (P = 0.016 mW). The improvement in sensitivity is due to two reasons: first, the boost in the signal at the detector due to the added reference beam; and second, the reduction of background noise caused by the electronics. With this new system, we are able to detect a 60-nm polystyrene latex (PSL) particle at a wavelength of 633 nm (∼λ/10) on a silicon wafer with an improvement in the signal-to-noise ratio (SNR) of approximately 4 dB.

5.
Biomed Opt Express ; 11(8): 4735-4758, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923075

RESUMO

Previous simulation studies by Menzel et al. [Phys. Rev. X10, 021002 (2020)] have shown that scattering patterns of light transmitted through artificial nerve fiber constellations contain valuable information about the tissue substructure such as the individual fiber orientations in regions with crossing nerve fibers. Here, we present a method that measures these scattering patterns in monkey and human brain tissue using coherent Fourier scatterometry with normally incident light. By transmitting a non-focused laser beam (λ = 633 nm) through unstained histological brain sections, we measure the scattering patterns for small tissue regions (with diameters of 0.1-1 mm), and show that they are in accordance with the simulated scattering patterns. We reveal the individual fiber orientations for up to three crossing nerve fiber bundles, with crossing angles down to 25°.

6.
Appl Opt ; 58(36): 9803-9807, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873623

RESUMO

In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but have yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multimode-fiber-coupled detectors and fabricated high-performance 20 µm, 25 µm, and 50 µm diameter detectors targeted for visible, near-infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We achieved over 80% system efficiency and $ {\lt} {20}\;{\rm ps}$<20ps timing jitter for 20 µm SNSPDs. Also, we realized 70% system efficiency and $ {\lt} {20}\;{\rm ps}$<20ps timing jitter for 50 µm SNSPDs. The high-efficiency multimode-fiber-coupled SNSPDs with unparalleled time resolution will benefit various quantum optics experiments and applications in the future.

7.
Nano Lett ; 19(8): 5452-5458, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313928

RESUMO

Single-photon sources and detectors are indispensable building blocks for integrated quantum photonics, a research field that is seeing ever increasing interest for numerous applications. In this work, we implemented essential components for a quantum key distribution transceiver on a single photonic chip. Plasmonic antennas on top of silicon nitride waveguides provide Purcell enhancement with a concurrent increase of the count rate, speeding up the microsecond radiative lifetime of IR-emitting colloidal PbS/CdS quantum dots (QDs). The use of low-fluorescence silicon nitride, with a waveguide loss smaller than 1 dB/cm, made it possible to implement high extinction ratio optical filters and low insertion loss spectrometers. Waveguide-coupled superconducting nanowire single-photon detectors allow for low time-jitter single-photon detection. To showcase the performance of the components, we demonstrate on-chip lifetime spectroscopy of PbS/CdS QDs. The method developed in this paper is predicted to scale down to single QDs, and newly developed emitters can be readily integrated on the chip-based platform.

8.
Biomed Opt Express ; 8(9): 3981-3992, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29026683

RESUMO

We demonstrate a low-cost optical method for measuring the gloss properties with improved sensitivity in the low gloss regime, relevant for skin gloss properties. The gloss estimation method is based on, on the one hand, the slope of the intensity gradient in the transition regime between specular and diffuse reflection and on the other on the sum over the intensities of pixels above threshold, derived from a camera image obtained using unpolarized white light illumination. We demonstrate the improved sensitivity of the two proposed methods using Monte Carlo simulations and experiments performed on ISO gloss calibration standards with an optical prototype. The performance and linearity of the method was compared with different professional gloss measurement devices based on the ratio of specular to diffuse intensity. We demonstrate the feasibility for in-vivo skin gloss measurements by quantifying the temporal evolution of skin gloss after application of standard paraffin cream bases on skin. The presented method opens new possibilities in the fields of cosmetology and dermatopharmacology for measuring the skin gloss and resorption kinetics and the pharmacodynamics of various external agents.

9.
Appl Opt ; 55(16): 4408-13, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27411195

RESUMO

We demonstrate a method to obtain within an arbitrary numerical aperture (NA) the entire scattering matrix of a scatterer by using focused beam coherent Fourier scatterometry. The far-field intensities of all scattered angles within the NA of the optical system are obtained in one shot. The corresponding phases of the field are obtained by an interferometric configuration. This method enables the retrieval of the maximum available information about the scatterer from scattered far-field data contained in the given NA of the system.

10.
Opt Express ; 22(20): 24678-88, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322042

RESUMO

Optical scatterometry is the state of art optical inspection technique for quality control in lithographic process. As such, any boost in its performance carries very relevant potential in semiconductor industry. Recently we have shown that coherent Fourier scatterometry (CFS) can lead to a notably improved sensitivity in the reconstruction of the geometry of printed gratings. In this work, we report on implementation of a CFS instrument, which confirms the predicted performances. The system, although currently operating at a relatively low numerical aperture (NA = 0.4) and long wavelength (633 nm) allows already the reconstruction of the grating parameters with nanometer accuracy, which is comparable to that of AFM and SEM measurements on the same sample, used as reference measurements. Additionally, 1 nm accuracy in lateral positioning has been demonstrated, corresponding to 0.08% of the pitch of the grating used in the actual experiment.

11.
Appl Opt ; 52(11): 2363-73, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23670768

RESUMO

We present an iterative learning control (ILC) algorithm for controlling the shape of a membrane deformable mirror (DM). We furthermore give a physical interpretation of the design parameters of the ILC algorithm. On the basis of this insight, we derive a simple tuning procedure for the ILC algorithm that, in practice, guarantees stable and fast convergence of the membrane to the desired shape. In order to demonstrate the performance of the algorithm, we have built an experimental setup that consists of a commercial membrane DM, a wavefront sensor, and a real-time controller. The experimental results show that, by using the ILC algorithm, we are able to achieve a relatively small error between the real and desired shape of the DM while at the same time we are able to control the saturation of the actuators. Moreover, we show that the ILC algorithm outperforms other control algorithms available in the literature.

12.
Opt Lett ; 38(6): 812-4, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23503224

RESUMO

We study the phase retrieval (PR) technique using through-focus intensity measurements and explain the dependence of PR on the defocus distance. An optimal measurement plane in the out-of-focus region is identified where the intensity distribution on the optical axis drops to the first minimum after focus. Experimental results confirm the theoretical predictions and are in good agreement with an independent phase measurement.

13.
Opt Express ; 20(27): 28929-40, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263133

RESUMO

Bessel-Gauss beams are known as non-diffracting beams. They can be obtained by focusing an annularly shaped collimated laser beam. Here, we report for the first time on the direct measurement of the phase evolution of such beams by relying on longitudinal-differential interferometry. We found that the characteristics of Bessel-Gauss beams cause a continuously increasing phase anomaly in the spatial domain where such beams do not diverge, i.e. there is a larger phase advance of the beam when compared to a referential plane wave. Simulations are in excellent agreement with measurements. We also provide an analytical treatment of the problem that matches both experimental and numerical results and provides an intuitive explanation.


Assuntos
Artefatos , Luz , Modelos Estatísticos , Espalhamento de Radiação , Simulação por Computador
14.
Appl Opt ; 51(31): 7684-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23128720

RESUMO

We have found an alternative way of achieving a doughnutlike focused spot by simply melting a subwavelength scatterer in a polycarbonate/ZnS sample. The near-field microscopy technique is used to directly measure the induced doughnut spot in the near-field regime. A numerical model based on rigorous solution of the Maxwell's equations is proposed to study the phenomena. The simulations help to understand the optical mechanism behind the spot formation.

15.
J Opt Soc Am A Opt Image Sci Vis ; 24(4): 1042-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17361290

RESUMO

In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable.


Assuntos
Algoritmos , Astronomia/instrumentação , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Interferometria/instrumentação , Astronomia/métodos , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Interferometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Appl Opt ; 45(4): 597-604, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16485668

RESUMO

We introduce the concept of chromatism compensation in nulling interferometry that enables a high rejection ratio in a wide spectral band. Therefore the achromaticity condition considered in most nulling interferometers can be relaxed. We show that this chromatism compensation cannot be applied to a two-beam nulling interferometer, and we make an analysis of the particular case of a three-telescope configuration.

17.
Opt Express ; 14(7): 2657-70, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19516397

RESUMO

We introduce a new concept of nulling interferometer without any achromatic device, using polarization properties of light. This type of interferometer should enable a high rejection ratio in a theoretically unlimited spectral band. We analyze several consequences of the proposed design, notably, the possibility of fast internal modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA