Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(16): 163003, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792384

RESUMO

We perform Ramsey interferometry on an ultracold ^{87}Rb ensemble confined in an optical dipole trap. We use a π pulse set at the middle of the interferometer to restore the coherence of the spin ensemble by canceling out phase inhomogeneities and creating a spin echo in the contrast. However, for high atomic densities, we observe the opposite behavior: the π pulse accelerates the dephasing of the spin ensemble leading to a faster contrast decay of the interferometer. We understand this phenomenon as a competition between the spin-echo technique and an exchange-interaction driven spin self-rephasing mechanism based on the identical spin rotation effect. Our experimental data are well reproduced by a numerical model.

2.
Phys Rev Lett ; 103(8): 080405, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792699

RESUMO

In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4 Planck's constant k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N Planck's constant k momentum transfer by a multipulse sequence and is implemented on a 8 Planck's constant k interferometer. We demonstrate the area enhancement by measuring inertial forces.

3.
Phys Rev Lett ; 92(23): 230802, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15245149

RESUMO

We have remeasured the absolute 1S-2S transition frequency nu(H) in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (-29+/-57) Hz for the drift of nu(H) with respect to the ground state hyperfine splitting nu(Cs) in 133Cs. Combining this result with the recently published optical transition frequency in 199Hg+ against nu(Cs) and a microwave 87Rb and 133Cs clock comparison, we deduce separate limits on alpha/alpha=(-0.9+/-2.9) x 10(-15) yr(-1) and the fractional time variation of the ratio of Rb and Cs nuclear magnetic moments mu(Rb)/mu(Cs) equal to (-0.5+/-1.7) x 10(-15) yr(-1). The latter provides information on the temporal behavior of the constant of strong interaction.

4.
Phys Rev Lett ; 90(15): 150801, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12732023

RESUMO

Over five years, we have compared the hyperfine frequencies of 133Cs and 87Rb atoms in their electronic ground state using several laser-cooled 133Cs and 87Rb atomic fountains with an accuracy of approximately 10(-15). These measurements set a stringent upper bound to a possible fractional time variation of the ratio between the two frequencies: d/dt ln([(nu(Rb))/(nu(Cs))]=(0.2+/-7.0)x 10(-16) yr(-1) (1sigma uncertainty). The same limit applies to a possible variation of the quantity (mu(Rb)/mu(Cs))alpha(-0.44), which involves the ratio of nuclear magnetic moments and the fine structure constant.

5.
Phys Rev Lett ; 89(23): 233004, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12485005

RESUMO

We present a new method based on a transfer of population by adiabatic passage that allows one to prepare cold atomic samples with a well-defined ratio of atomic density and atom number. This method is used to perform a measurement of the cold collision frequency shift in a laser cooled cesium clock at the percent level, which makes the evaluation of the cesium fountain accuracy at the 10(-16) level realistic. With improvements, the adiabatic passage would allow measurements of density-dependent phase shifts at the 10(-3) level in high precision experiments.

6.
Phys Rev Lett ; 86(16): 3459-62, 2001 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11327998

RESUMO

We have observed a Bose-Einstein condensate in a dilute gas of 4He in the (3)2S(1) metastable state. We find a critical temperature of (4.7+/-0.5) microK and a typical number of atoms at the threshold of 8 x 10(6). The maximum number of atoms in our condensate is about 5 x 10(5). An approximate value for the scattering length a = (16+/-8) nm is measured. The mean elastic collision rate at threshold is then estimated to be about 2 x 10(4) s(-1), indicating that we are deeply in the hydrodynamic regime. The typical decay time of the condensate is 2 s, which places an upper bound on the rate constants for two-body and three-body inelastic collisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA