Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Factors ; : 187208231185705, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357740

RESUMO

OBJECTIVE: Using brain haemodynamic responses to measure perceived risk from traffic complexity during automated driving. BACKGROUND: Although well-established during manual driving, the effects of driver risk perception during automated driving remain unknown. The use of fNIRS in this paper for assessing drivers' states posits it could become a novel method for measuring risk perception. METHODS: Twenty-three volunteers participated in an empirical driving simulator experiment with automated driving capability. Driving conditions involved suburban and urban scenarios with varying levels of traffic complexity, culminating in an unexpected hazardous event. Perceived risk was measured via fNIRS within the prefrontal cortical haemoglobin oxygenation and from self-reports. RESULTS: Prefrontal cortical haemoglobin oxygenation levels significantly increased, following self-reported perceived risk and traffic complexity, particularly during the hazardous scenario. CONCLUSION: This paper has demonstrated that fNIRS is a valuable research tool for measuring variations in perceived risk from traffic complexity during highly automated driving. Even though the responsibility over the driving task is delegated to the automated system and dispositional trust is high, drivers perceive moderate risk when traffic complexity builds up gradually, reflected in a corresponding significant increase in blood oxygenation levels, with both subjective (self-reports) and objective (fNIRS) increasing further during the hazardous scenario. APPLICATION: Little is known regarding the effects of drivers' risk perception with automated driving. Building upon our experimental findings, future work can use fNIRS to investigate the mental processes for risk assessment and the effects of perceived risk on driving behaviours to promote the safe adoption of automated driving technology.

2.
Front Psychol ; 14: 1078723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935947

RESUMO

One major challenge for automated cars is to not only be safe, but also secure. Indeed, connected vehicles are vulnerable to cyberattacks, which may jeopardize individuals' trust in these vehicles and their safety. In a driving simulator experiment, 38 participants were exposed to two screen failures: silent (i.e., no turn signals on the in-vehicle screen and instrument cluster) and explicit (i.e., ransomware attack), both while performing a non-driving related task (NDRT) in a conditionally automated vehicle. Results showed that objective trust decreased after experiencing the failures. Drivers took over control of the vehicle and stopped their NDRT more often after the explicit failure than after the silent failure. Lateral control of the vehicle was compromised when taking over control after both failures compared to automated driving performance. However, longitudinal control proved to be smoother in terms of speed homogeneity compared to automated driving performance. These findings suggest that connectivity failures negatively affect trust in automation and manual driving performance after taking over control. This research posits the question of the importance of connectivity in the realm of trust in automation. Finally, we argue that engagement in a NDRT while riding in automated mode is an indicator of trust in the system and could be used as a surrogate measure for trust.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...