Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 81: 101893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309623

RESUMO

OBJECTIVE: Chronic exposure to persistent organic pollutants (POPs) is associated with increased incidence of type 2 diabetes, hyperglycemia, and poor insulin secretion in humans. Dioxins and dioxin-like compounds are a broad class of POPs that exert cellular toxicity through activation of the aryl hydrocarbon receptor (AhR). We previously showed that a single high-dose injection of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka dioxin; 20 µg/kg) in vivo reduced fasted and glucose-stimulated plasma insulin levels for up to 6 weeks in male and female mice. TCDD-exposed male mice were also modestly hypoglycemic and had increased insulin sensitivity, whereas TCDD-exposed females were transiently glucose intolerant. Whether these effects are driven by AhR activation in ß-cells requires investigation. METHODS: We exposed female and male ß-cell specific Ahr knockout (ßAhrKO) mice and littermate Ins1-Cre genotype controls (ßAhrWT) to a single high dose of 20 µg/kg TCDD and tracked the mice for 6 weeks. RESULTS: Under baseline conditions, deleting AhR from ß-cells caused hypoglycemia in female mice, increased insulin secretion ex vivo in female mouse islets, and promoted modest weight gain in male mice. Importantly, high-dose TCDD exposure impaired glucose homeostasis and ß-cell function in ßAhrWT mice, but these phenotypes were largely abolished in TCDD-exposed ßAhrKO mice. CONCLUSION: Our study demonstrates that AhR signaling in ß-cells is important for regulating baseline ß-cell function in female mice and energy homeostasis in male mice. We also show that ß-cell AhR signaling largely mediates the effects of TCDD on glucose homeostasis in both sexes, suggesting that the effects of TCDD on ß-cell function and health are driving metabolic phenotypes in peripheral tissues.


Assuntos
Diabetes Mellitus Tipo 2 , Dioxinas , Dibenzodioxinas Policloradas , Animais , Feminino , Humanos , Masculino , Camundongos , Diabetes Mellitus Tipo 2/induzido quimicamente , Glucose , Homeostase , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Can J Diabetes ; 46(4): 419-427, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35589534

RESUMO

The coronavirus-2019 (COVID-19) pandemic has had significant impact on research directions and productivity in the past 2 years. Despite these challenges, since 2020, more than 2,500 peer-reviewed articles have been published on pancreatic islet biology. These include updates on the roles of isocitrate dehydrogenase, pyruvate kinase and incretin hormones in insulin secretion, as well as the discovery of inceptor and signalling by circulating RNAs. The year 2020 also brought advancements in in vivo and in vitro models, including a new transgenic mouse for assessing beta-cell proliferation, a "pancreas-on-a-chip" to study glucose-stimulated insulin secretion and successful genetic editing of primary human islet cells. Islet biologists evaluated the functionality of stem-cell-derived islet-like cells coated with semipermeable biomaterials to prevent autoimmune attack, revealing the importance of cell maturation after transplantation. Prompted by observations that COVID-19 symptoms can worsen for people with obesity or diabetes, researchers examined how islets are directly affected by severe acute respiratory syndrome coronavirus 2. Herein, we highlight novel functional insights, technologies and therapeutic approaches that emerged between March 2020 and July 2021, written for both scientific and lay audiences. We also include a response to these advancements from patient stakeholders, to help lend a broader perspective to developments and challenges in islet research.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Biologia , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Ilhotas Pancreáticas/fisiologia , Camundongos
3.
Am J Physiol Endocrinol Metab ; 322(5): E383-E413, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156417

RESUMO

Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause ß-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, ß-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and ß-cell function. We discuss key gaps and limitations that should be assessed in future studies.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Ambientais/toxicidade , Glucose , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/toxicidade , Poluentes Orgânicos Persistentes , Praguicidas/análise , Praguicidas/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...