Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Invest Dermatol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38520417

RESUMO

Intricate signaling systems are required to maintain homeostasis and promote differentiation in the epidermis. Receptor tyrosine kinases are central in orchestrating these systems in epidermal keratinocytes. In particular, EPHA2 and EGFR transduce distinct signals to dictate keratinocyte fate, yet how these cell communication networks are integrated has not been investigated. Our work shows that loss of EPHA2 impairs keratinocyte stratification, differentiation, and barrier function. To determine the mechanism of this dysfunction, we drew from our proteomics data of potential EPHA2 interacting proteins. We identified EGFR as a high-ranking EPHA2 interactor and subsequently validated this interaction. We found that when EPHA2 is reduced, EGFR activation and downstream signaling are intensified and sustained. Evidence indicates that prolonged SRC association contributes to the increase in EGFR signaling. We show that hyperactive EGFR signaling underlies the differentiation defect caused by EPHA2 knockdown because EGFR inhibition restores differentiation in EPHA2-deficient 3-dimensional skin organoids. Our data implicate a mechanism whereby EPHA2 restrains EGFR signaling, allowing for fine tuning in the processes of terminal differentiation and barrier formation. Taken together, we purport that crosstalk between receptor tyrosine kinases EPHA2 and EGFR is critical for epidermal differentiation.

3.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873414

RESUMO

Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To move towards a saturation map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 45 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.

4.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928117

RESUMO

CRISPR/Cas9 has been proposed as a treatment for genetically inherited skin disorders. Here we report that CRISPR transfection activates STING-dependent antiviral responses in keratinocytes, resulting in heightened endogenous interferon (IFN) responses through induction of IFN-κ, leading to decreased plasmid stability secondary to induction of the cytidine deaminase gene APOBEC3G. Notably, CRISPR-generated KO keratinocytes had permanent suppression of IFN-κ and IFN-stimulated gene (ISG) expression, secondary to hypermethylation of the IFNK promoter region by the DNA methyltransferase DNMT3B. JAK inhibition via baricitinib prior to CRISPR transfection increased transfection efficiency, prevented IFNK promoter hypermethylation, and restored normal IFN-κ activity and ISG responses. This work shows that CRISPR-mediated gene correction alters antiviral responses in keratinocytes, has implications for future gene therapies for inherited skin diseases using CRISPR technology, and suggests pharmacologic JAK inhibition as a tool for facilitating and attenuating inadvertent selection effects in CRISPR/Cas9 therapeutic approaches.


Assuntos
Interferon Tipo I , Antivirais , DNA/metabolismo , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Humanos
5.
J Invest Dermatol ; 143(2): 284-293, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36116512

RESUMO

Systemic sclerosis (SSc) is a clinically heterogeneous fibrotic disease with no effective treatment. Myofibroblasts are responsible for unresolving synchronous skin and internal organ fibrosis in SSc, but the drivers of sustained myofibroblast activation remain poorly understood. Using unbiased transcriptome analysis of skin biopsies, we identified the downregulation of SPAG17 in multiple independent cohorts of patients with SSc, and by orthogonal approaches, we observed a significant negative correlation between SPAG17 and fibrotic gene expression. Fibroblasts and endothelial cells explanted from SSc skin biopsies showed reduced chromatin accessibility at the SPAG17 locus. Remarkably, mice lacking Spag17 showed spontaneous skin fibrosis with increased dermal thickness, collagen deposition and stiffness, and altered collagen fiber alignment. Knockdown of SPAG17 in human and mouse fibroblasts and microvascular endothelial cells was accompanied by spontaneous myofibroblast transformation and markedly heightened sensitivity to profibrotic stimuli. These responses were accompanied by constitutive TGF-ß pathway activation. Thus, we discovered impaired expression of SPAG17 in SSc and identified, to our knowledge, a previously unreported cell-intrinsic role for SPAG17 in the negative regulation of fibrotic responses. These findings shed fresh light on the pathogenesis of SSc and may inform the search for innovative therapies for SSc and other fibrotic conditions through SPAG17 signaling.


Assuntos
Miofibroblastos , Escleroderma Sistêmico , Animais , Humanos , Camundongos , Células Cultivadas , Colágeno/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Fibrose , Proteínas dos Microtúbulos/metabolismo , Miofibroblastos/patologia , Escleroderma Sistêmico/patologia , Pele/patologia
6.
Front Cell Dev Biol ; 10: 903696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686051

RESUMO

While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.

7.
J Allergy Clin Immunol ; 149(2): 640-649.e5, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34343561

RESUMO

BACKGROUND: A major issue with the current management of psoriasis is our inability to predict treatment response. OBJECTIVE: Our aim was to evaluate the ability to use baseline molecular expression profiling to assess treatment outcome for patients with psoriasis. METHODS: We conducted a longitudinal study of 46 patients with chronic plaque psoriasis treated with anti-TNF agent etanercept, and molecular profiles were assessed in more than 200 RNA-seq samples. RESULTS: We demonstrated correlation between clinical response and molecular changes during the course of the treatment, particularly for genes responding to IL-17A/TNF in keratinocytes. Intriguingly, baseline gene expressions in nonlesional, but not lesional, skin were the best marker of treatment response at week 12. We identified USP18, a known regulator of IFN responses, as positively correlated with Psoriasis Area and Severity Index (PASI) improvement (P = 9.8 × 10-4) and demonstrate its role in regulating IFN/TNF responses in keratinocytes. Consistently, cytokine gene signatures enriched in baseline nonlesional skin expression profiles had strong correlations with PASI improvement. Using this information, we developed a statistical model for predicting PASI75 (ie, 75% of PASI improvement) at week 12, achieving area under the receiver-operating characteristic curve value of 0.75 and up to 80% accurate PASI75 prediction among the top predicted responders. CONCLUSIONS: Our results illustrate feasibility of assessing drug response in psoriasis using nonlesional skin and implicate involvement of IFN regulators in anti-TNF responses.


Assuntos
Citocinas/biossíntese , Psoríase/tratamento farmacológico , Pele/imunologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Citocinas/genética , Humanos , Estudos Longitudinais , Psoríase/imunologia , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma
8.
Arch Dermatol Res ; 314(9): 909-915, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34089377

RESUMO

Dipeptidyl-peptidase 4 (DPP4) is a multifunctional type II transmembrane glycoprotein that is expressed on various cell surfaces. While DPP4 inhibitors have a therapeutic role in the treatment of diabetes mellitus, they are an independent risk factor in the development of bullous pemphigoid. Contrarily, there are reports of improvement in psoriasis with DPP4 inhibition. We investigated the effect of DPP4 inhibition on primary human keratinocytes to determine whether DPP4 modulates keratinocyte inflammatory signaling and keratinocyte homeostasis. We performed RNA sequencing of primary adult human keratinocytes treated with DPP4 inhibitor, identifying 424 differentially expressed genes. Gene ontology analysis revealed significant enrichment of epidermal differentiation and cornified envelope genes. Using three-dimensional organotypic cultures and a pan-late cornified envelope 2 (LCE2) antibody, we demonstrate a dose dependent relationship between DPP4 inhibition and increased expression of LCE2 during epidermal development. The late cornified envelope gene clusters are expressed at the late stages of epithelial development, responding to stimuli such as calcium and ultraviolet light. While its biologic function is not fully understood, mutations in LCE3B/LCE3C confer a 40% increased risk in the development of plaque psoriasis. While we did not identify significant modulation of keratinocyte inflammatory markers, DPP4 inhibition increased expression of the late cornified envelope may offer a potential alternative therapeutic mechanism in psoriasis.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Queratinócitos/metabolismo , Psoríase , Adulto , Cálcio/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas/uso terapêutico , Humanos , Psoríase/tratamento farmacológico , Regulação para Cima
9.
Exp Dermatol ; 31(4): 615-621, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34796550

RESUMO

Laminin-332 pemphigoid is a rare and chronic autoimmune blistering disease which results in subepidermal blisters and erosive lesions predominantly localized to mucous membranes. As histologic inflammation is variable and non-complement-fixing IgG antibodies against laminin-332 are the predominant class of autoantibodies deposited at the epidermal basement membrane zone, we hypothesized that complement-independent pro-inflammatory and blistering pathways existed similarly to that previously shown in bullous pemphigoid. As autoantibodies to laminin α3 are most prevalent, we studied the major cellular response to blockade of laminin α3 using a well-characterized monoclonal antibody (P3H9-2). RNA-seq revealed upregulation of numerous desmosomal genes (DSG1, DSG3, DSC1, DSC3 and DSP) as well as KRT1 and KRT10. Additionally, P3H9-2-treated cells demonstrated downregulation of most hemidesmosomal genes. A pro-inflammatory response was not appreciated. Using pharmacological inhibitors, we identified both protein kinase C and NOTCH as key regulators of P3H9-2 induced differentiation. We lastly utilized 3D human skin equivalents to determine whether blockade of laminin α3 would lead to delayed blistering, consistent with keratinocyte differentiation. Significant blistering was noted after 72 h of treatment, with only minimal separation at 24 h. In summary, blockade of laminin α3 alters keratinocyte differentiation, representing a potential complement-independent mechanism of blistering.


Assuntos
Doenças Autoimunes , Penfigoide Bolhoso , Autoanticorpos , Autoantígenos , Vesícula , Proteínas do Sistema Complemento , Perfilação da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Laminina/genética
10.
J Invest Dermatol ; 142(5): 1360-1371.e15, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34757068

RESUMO

Differences in the morphology and physiology of darkly pigmented skin compared with those of lightly pigmented skin are well-recognized. There are also disparities in the prevalence and clinical features for many inflammatory skin diseases, including atopic dermatitis and psoriasis; however, the underlying mechanisms are largely unknown. We compared the baseline gene expression in full-thickness skin biopsies from healthy individuals self-reporting as African American (AA) or as White non-Hispanic (WNH). Extensively validated RNA-sequencing analysis identified 570 differentially expressed genes in AA skin, including Igs and their receptors such as FCER1G; proinflammatory genes such as TNFα and IL32; and epidermal differentiation cluster and keratin genes. Differentially expressed genes were functionally enriched for inflammatory responses, keratinization, and cornified envelope formation. RNA-sequencing analysis of three-dimensional human skin equivalents made from AA and WNH primary keratinocytes revealed 360 differentially expressed genes (some shared with skin) that were enriched by similar functions. AA human skin equivalents appeared more responsive to TNF-α proinflammatory effects. Finally, AA-specific differentially expressed genes in the skin and human skin equivalents significantly overlapped with molecular signatures of skin in patients with atopic dermatitis and psoriasis. Overall, these findings suggest the existence of intrinsic proinflammatory circuits in AA keratinocytes/skin that may account for disease disparities and will help to build a foundation for the development of targeted skin disease prevention.


Assuntos
Dermatite Atópica , Psoríase , Negro ou Afro-Americano/genética , Dermatite Atópica/patologia , Perfilação da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Psoríase/patologia , RNA/metabolismo , Pele/patologia , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Ocul Surf ; 21: 193-205, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34119713

RESUMO

PURPOSE: To understand the relationship between ciliogenesis and autophagy in the corneal epithelium. METHODS: siRNAs for EphA2 or PLD1 were used to inhibit protein expression in vitro. Morpholino-anti-EphA2 was used to knockdown EphA2 in Xenopus skin. An EphA2 knockout mouse was used to conduct loss of function studies. Autophagic vacuoles were visualized by contrast light microscopy. Autophagy flux, was measured by LC3 turnover and p62 protein levels. Immunostaining and confocal microscopy were conducted to visualize cilia in cultured cells and in vivo. RESULTS: Loss of EphA2 (i) increased corneal epithelial thickness by elevating proliferative potential in wing cells, (ii) reduced the number of ciliated cells, (iii) increased large hollow vacuoles, that could be rescued by BafA1; (iv) inhibited autophagy flux and (v) increased GFP-LC3 puncta in the mouse corneal epithelium. This indicated a role for EphA2 in stratified epithelial assembly via regulation of proliferation as well as a positive role in both ciliogenesis and end-stage autophagy. Inhibition of PLD1, an EphA2 interacting protein that is a critical regulator of end-stage autophagy, reversed the accumulation of vacuoles, and the reduction in the number of ciliated cells due to EphA2 depletion, suggesting EphA2 regulation of both end-stage autophagy and ciliogenesis via PLD1. PLD1 mediated rescue of ciliogenesis by EphA2 depletion was blocked by BafA1, placing autophagy between EphA2 signaling and regulation of ciliogenesis. CONCLUSION: Our findings demonstrate a novel role for EphA2 in regulating both autophagy and ciliogenesis, processes that are essential for proper corneal epithelial homeostasis.


Assuntos
Autofagia , Epitélio Corneano , Animais , Células Cultivadas , Cílios , Camundongos
12.
J Invest Dermatol ; 141(10): 2436-2448, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864770

RESUMO

Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.


Assuntos
Epiderme/patologia , Inflamação/etiologia , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Diferenciação Celular , Células Cultivadas , Dermatite Atópica/etiologia , Humanos , NF-kappa B/fisiologia , Psoríase/etiologia , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia
13.
FASEB J ; 34(1): 525-539, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914679

RESUMO

Whereas much is known about the genes regulated by ΔNp63α in keratinocytes, how ΔNp63α is regulated is less clear. During studies with the hydroxylase, factor inhibiting hypoxia-inducible factor 1 (FIH-1), we observed increases in epidermal ΔNp63α expression along with proliferative capacity in a conditional FIH-1 transgenic mouse. Conversely, loss of FIH-1 in vivo and in vitro attenuated ΔNp63α expression. To elucidate the FIH-1/p63 relationship, BioID proteomics assays identified FIH-1 binding partners that had the potential to regulate p63 expression. FIH-1 interacts with two previously unknown partners, Plectin1 and signal transducer and activator of transcription 1 (STAT1) leading to the regulation of ΔNp63α expression. Two known interactors of FIH-1, apoptosis-stimulating of P53 protein 2 (ASPP2) and histone deacetylase 1 (HDAC1), were also identified. Knockdown of ASPP2 upregulated ΔNp63α and reversed the decrease in ΔNp63α by FIH-1 depletion. Additionally, FIH-1 regulates growth arrest and DNA damage-45 alpha (GADD45α), a negative regulator of ΔNp63α by interacting with HDAC1. GADD45α knockdown rescued reduction in ΔNp63α by FIH-1 depletion. Collectively, our data reveal that FIH-1 positively regulates ΔNp63α in keratinocytes via variety of signaling partners: (a) Plectin1/STAT1, (b) ASPP2, and (c) HDAC1/GADD45α signaling pathways.


Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células , Células Epiteliais/citologia , Queratinócitos/citologia , Proteínas de Membrana/metabolismo , Oxigenases de Função Mista/metabolismo , Proteoma/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Oxigenases de Função Mista/genética , Proteoma/análise , Proteínas Repressoras/genética
14.
J Allergy Clin Immunol ; 145(5): 1406-1415, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31891686

RESUMO

BACKGROUND: Although multiple studies have assessed molecular changes in chronic atopic dermatitis (AD) lesions, little is known about the transition from acute to chronic disease stages, and the factors and mechanisms that shape chronic inflammatory activity. OBJECTIVES: We sought to assess the global transcriptome changes that characterize the progression from acute to chronic stages of AD. METHODS: We analyzed transcriptome changes in paired nonlesional skin, acute and chronic AD lesions from 11 patients and 38 healthy controls by RNA-sequencing, and conducted in vivo and histological assays to evaluate findings. RESULTS: Our data demonstrate that approximately 74% of the genes dysregulated in acute lesions remain or are further dysregulated in chronic lesions, whereas only 34% of the genes dysregulated in chronic lesions are altered already in the acute stage. Nonlesional AD skin exhibited enrichment of TNF, TH1, TH2, and TH17 response genes. Acute lesions showed marked dendritic-cell signatures and a prominent enrichment of TH1, TH2, and TH17 responses, along with increased IL-36 and thymic stromal lymphopoietin expression, which were further heightened in chronic lesions. In addition, genes involved in skin barrier repair, keratinocyte proliferation, wound healing, and negative regulation of T-cell activation showed a significant dysregulation in the chronic versus acute comparison. Furthermore, our data show progressive changes in vasculature and maturation of dendritic-cell subsets with chronicity, with FOXK1 acting as immune regulator. CONCLUSIONS: Our results show that the changes accompanying the transition from nonlesional to acute to chronic inflammation in AD are quantitative rather than qualitative, with chronic AD having heightened TH2, TH1, TH17, and IL36 responses and skin barrier repair mechanisms. These findings provide novel insights and highlight underappreciated pathways in AD pathogenesis that may be amenable to therapeutic targeting.


Assuntos
Citocinas/genética , Dermatite Atópica/genética , Doença Aguda , Doença Crônica , Dermatite Atópica/imunologia , Feminino , Humanos , Masculino , Análise de Sequência de RNA , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Transcriptoma
15.
Methods Mol Biol ; 2109: 185-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31123999

RESUMO

Biotin identification (BioID) proteomics facilitates the unbiased detection of protein interaction neighborhoods in live cells. The BioID technique relies on the covalent biotin alteration of vicinal proteins by a modified bacterial biotin ligase. The biotin ligase is fused to a protein of interest to identify putative protein-protein interactions. Here, we describe the adaptation of this technique for use in three-dimensional epidermal cultures. Due to the covalent biotin modification of proteins, our protocol allows for the complete solubilization of the total cellular protein content in differentiated keratinocytes. Thus, a comprehensive network of potential interactors of a protein of interest can be mapped.


Assuntos
Biotina/química , Proteômica/métodos , Pele/citologia , Humanos , Técnicas de Cultura de Órgãos/métodos , Mapeamento de Interação de Proteínas , Pele/metabolismo
16.
Nano Lett ; 19(10): 6862-6868, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545611

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a sensitive, chemically specific, and short-time response probing method with significant potential in biomedical sensing. This paper reports the integration of SERS with microneedle arrays as a minimally invasive platform for chemical sensing, with a particular view toward sensing in interstitial fluid (ISF). Microneedle arrays were fabricated from a commercial polymeric adhesive and coated with plasmonically active gold nanorods that were functionalized with the pH-sensitive molecule 4-mercaptobenzoic acid. This sensor can quantitate pH over a range of 5 to 9 and can detect pH levels in an agar gel skin phantom and in human skin in situ. The sensor array is stable and mechanically robust in that it exhibits no loss in SERS activity after multiple punches through an agar gel skin phantom and human skin or after a month-long incubation in phosphate-buffered saline. This work is the first to integrate SERS-active nanoparticles with polymeric microneedle arrays and to demonstrate in situ sensing with this platform.

17.
Sci Transl Med ; 11(511)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554739

RESUMO

Lichen planus (LP) is a chronic debilitating inflammatory disease of unknown etiology affecting the skin, nails, and mucosa with no current FDA-approved treatments. It is histologically characterized by dense infiltration of T cells and epidermal keratinocyte apoptosis. Using global transcriptomic profiling of patient skin samples, we demonstrate that LP is characterized by a type II interferon (IFN) inflammatory response. The type II IFN, IFN-γ, is demonstrated to prime keratinocytes and increase their susceptibility to CD8+ T cell-mediated cytotoxic responses through MHC class I induction in a coculture model. We show that this process is dependent on Janus kinase 2 (JAK2) and signal transducer and activator of transcription 1 (STAT1), but not JAK1 or STAT2 signaling. Last, using drug prediction algorithms, we identify JAK inhibitors as promising therapeutic agents in LP and demonstrate that the JAK1/2 inhibitor baricitinib fully protects keratinocytes against cell-mediated cytotoxic responses in vitro. In summary, this work elucidates the role and mechanisms of IFN-γ in LP pathogenesis and provides evidence for the therapeutic use of JAK inhibitors to limit cell-mediated cytotoxicity in patients with LP.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Interferon gama/farmacologia , Janus Quinase 2/metabolismo , Queratinócitos/imunologia , Líquen Plano/imunologia , Fator de Transcrição STAT1/metabolismo , Apoptose/efeitos dos fármacos , Epiderme/patologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Inflamação/patologia , Queratinócitos/efeitos dos fármacos , Líquen Plano/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
18.
J Invest Dermatol ; 139(7): 1480-1489, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30641038

RESUMO

Atopic dermatitis (AD) affects up to 20% of children and adults worldwide. To gain a deeper understanding of the pathophysiology of AD, we conducted a large-scale transcriptomic study of AD with deeply sequenced RNA-sequencing samples using long (126-bp) paired-end reads. In addition to the comparisons against previous transcriptomic studies, we conducted in-depth analysis to obtain a high-resolution view of the global architecture of the AD transcriptome and contrasted it with that of psoriasis from the same cohort. By using 147 RNA samples in total, we found striking correlation between dysregulated genes in lesional psoriasis and lesional AD skin with 81% of AD dysregulated genes being shared with psoriasis. However, we described disease-specific molecular and cellular features, with AD skin showing dominance of IL-13 pathways, but with near undetectable IL-4 expression. We also demonstrated greater disease heterogeneity and larger proportion of dysregulated long noncoding RNAs in AD, and illustrated the translational impact, including skin-type classification and drug-target prediction. This study is by far the largest study comparing the AD and psoriasis transcriptomes using RNA sequencing and demonstrating the shared inflammatory components, as well as specific discordant cytokine signatures of these two skin diseases.


Assuntos
Dermatite Atópica/imunologia , Interleucina-13/metabolismo , Especificidade de Órgãos/genética , Psoríase/imunologia , RNA/genética , Pele/metabolismo , Células Th2/imunologia , Estudos de Coortes , Dermatite Atópica/genética , Perfilação da Expressão Gênica , Humanos , Interleucina-13/genética , Interleucina-4/metabolismo , Psoríase/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Transdução de Sinais , Pele/patologia , Transcriptoma
19.
J Allergy Clin Immunol ; 143(1): 36-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414395

RESUMO

Atopic dermatitis (AD) is a prevalent disease worldwide and is associated with systemic comorbidities representing a significant burden on patients, their families, and society. Therapeutic options for AD remain limited, in part because of a lack of well-characterized animal models. There has been increasing interest in developing experimental approaches to study the pathogenesis of human AD in vivo, in vitro, and in silico to better define pathophysiologic mechanisms and identify novel therapeutic targets and biomarkers that predict therapeutic response. This review critically appraises a range of models, including genetic mutations relevant to AD, experimental challenge of human skin in vivo, tissue culture models, integration of "omics" data sets, and development of predictive computational models. Although no one individual model recapitulates the complex AD pathophysiology, our review highlights insights gained into key elements of cutaneous biology, molecular pathways, and therapeutic target identification through each approach. Recent developments in computational analysis, including application of machine learning and a systems approach to data integration and predictive modeling, highlight the applicability of these methods to AD subclassification (endotyping), therapy development, and precision medicine. Such predictive modeling will highlight knowledge gaps, further inform refinement of biological models, and support new experimental and systems approaches to AD.


Assuntos
Simulação por Computador , Dermatite Atópica , Modelos Imunológicos , Medicina de Precisão , Pele , Biomarcadores , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Dermatite Atópica/terapia , Humanos , Pele/imunologia , Pele/patologia
20.
J Invest Dermatol ; 139(6): 1264-1273, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30543901

RESUMO

Genetic variation in the NF-κB inhibitors, ABIN1 and A20, increase risk for psoriasis. While critical for hematopoietic immune cell function, these genes are believed to additionally inhibit psoriasis by dampening inflammatory signaling in keratinocytes. We dissected ABIN1 and A20's regulatory role in human keratinocyte inflammation using an RNA sequencing-based comparative genomic approach. Here we show subsets of the IL-17 and tumor necrosis factor-α signaling pathways are robustly restricted by A20 overexpression. In contrast, ABIN1 overexpression inhibits these genes more modestly for IL-17, and weakly for tumor necrosis factor-α. Our genome-scale analysis also indicates that inflammatory program suppression appears to be the major transcriptional influence of A20/ABIN1 overexpression, without obvious influence on keratinocyte viability genes. Our findings thus enable dissection of the differing anti-inflammatory mechanisms of two distinct psoriasis modifiers, which may be directly exploited for therapeutic purposes. Importantly, we report that IL-17-induced targets of A20 show similar aberrant epidermal layer-specific transcriptional upregulation in keratinocytes from diseases as diverse as psoriasis, atopic dermatitis, and erythrokeratodermia variabilis, suggesting a contributory role for epidermal inflammation in a broad spectrum of rashes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Exantema/imunologia , Queratinócitos/imunologia , Transdução de Sinais/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Eritroceratodermia Variável/imunologia , Eritroceratodermia Variável/patologia , Exantema/patologia , Genômica , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Queratinócitos/patologia , Cultura Primária de Células , Psoríase/imunologia , Psoríase/patologia , RNA-Seq , Análise de Célula Única , Pele/citologia , Pele/imunologia , Pele/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...