Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Physiol ; 14: 1174103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035684

RESUMO

Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations "for safe and effective whole-body electromyostimulation" were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) "general aspects of WB-EMS", 2) "preparation for training", recommendations for the 3) "WB-EMS application" itself and 4) "safety aspects during and after training". Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant's proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application.

3.
Metabolites ; 12(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144186

RESUMO

The effects of the different electrical frequencies of whole-body electrical stimulation (WB-EMS) on energy expenditure (EE) and the respiratory exchange ratio (RER) remain poorly understood. This study aimed to determine the effects of different WB-EMS electrical frequencies on EE and the RER during supine resting and uphill walking. A total of 10 healthy and recreationally active men (21.6 ± 3.3 years old) participated in the present study. Participants completed two testing sessions in a randomized order. In each session, a variety of impulse frequencies (1 hertz (Hz), 2 Hz, 4 Hz, 6 Hz, 8 Hz, and 10 Hz) were applied in a randomized order, allowing a 10 min passive recovery between them. Oxygen consumption and carbon dioxide production were measured to calculate EE and the RER. All frequencies increased EE at rest (all p ≤ 0.001), with 4 Hz being the frequency producing the highest increase (Δ = 8.89 ± 1.49 kcal/min), as did 6 Hz (Δ = 8.05 ± 1.52 kcal/min) and 8 Hz (Δ = 7.04 ± 2.16 kcal/min). An increment in the RER at rest was observed with 4 Hz, 6 Hz, 8 Hz and 10 Hz (all p ≤ 0.016), but not with 1 Hz and 2 Hz (p ≥ 0.923). During uphill walking, the frequency that elicited the highest increase in EE was 6 Hz (Δ = 4.87 ± 0.84 kcal/min) compared to the unstimulated condition. None of the impulse frequencies altered the RER during uphill walking. WB-EMS increases EE in healthy young men both during resting and uphill walking.

4.
J Int Soc Sports Nutr ; 19(1): 417-436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875695

RESUMO

Background: Prior evidence suggests that capsinoids ingestion may increase resting energy expenditure (EE) and fat oxidation (FATox), yet whether they can modulate those parameters during exercise conditions remains poorly understood. We hypothesized that dihydrocapsiate (DHC) ingestion would increase EE and specifically FATox during an acute bout of aerobic exercise at FATmax intensity (the intensity that elicits maximal fat oxidation during exercise [MFO]) in men with overweight/obesity. Since FATmax and MFO during aerobic exercise appear to be indicators of metabolic flexibility, whether DHC has an impact on FATox in this type of population is of clinical interest. Methods: A total of 24 sedentary men (age = 40.2 ± 9.2 years-old; body mass index = 31.6 ± 4.5 kg/m2 [n = 11 overweight, n = 13 obese]) participated in this randomized, triple-blinded, placebo-controlled, crossover trial (registered under ClinicalTrials.gov Identifier no. NCT05156697). On the first day, participants underwent a submaximal exercise test on a cycle ergometer to determine their MFO and FATmax intensity during exercise. After 72 hours had elapsed, the participants returned on 2 further days (≥ 72 hours apart) and performed a 60 min steady-state exercise bout (i.e. cycling at their FATmax, constant intensity) after ingesting either 12 mg of DHC or placebo; these conditions were randomized. Respiratory gas exchange was monitored by indirect calorimetry. Serum marker concentrations (i.e. glucose, triglycerides, non-esterified fatty acids (NEFAs), skin temperature, thermal perception, heart rate, and perceived fatigue) were assessed. Results: There were no significant differences (P > 0.05) between DHC and placebo conditions in the EE and FATox during exercise. Similarly, no significant changes were observed in glucose, triglycerides, or NEFAs serum levels, neither in the skin temperature nor thermal perception across conditions. Heart rate and perceived fatigue did not differ between conditions. Conclusions: DHC supplementation does not affect energy metabolism during exercise in men with overweight/obesity.


Assuntos
Exercício Físico , Sobrepeso , Tecido Adiposo/metabolismo , Adulto , Capsaicina/análogos & derivados , Estudos Cross-Over , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Teste de Esforço , Fadiga , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/terapia , Sobrepeso/terapia , Oxirredução , Consumo de Oxigênio , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...