Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1705-1721, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37758174

RESUMO

Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Sementes/genética , Mapeamento Cromossômico , Flavonoides , 2-Isopropilmalato Sintase , Proteínas de Arabidopsis/genética
2.
Nat Commun ; 14(1): 7052, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923709

RESUMO

Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.


Assuntos
Peróxido de Hidrogênio , Fotossíntese , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Cloroplastos/metabolismo , Desenvolvimento Vegetal , Luz , Dióxido de Carbono/metabolismo
3.
Essays Biochem ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999335

RESUMO

Metabolomics has emerged as an indispensable tool for exploring complex biological questions, providing the ability to investigate a substantial portion of the metabolome. However, the vast complexity and structural diversity intrinsic to metabolites imposes a great challenge for data analysis and interpretation. Liquid chromatography mass spectrometry (LC-MS) stands out as a versatile technique offering extensive metabolite coverage. In this mini-review, we address some of the hurdles posed by the complex nature of LC-MS data, providing a brief overview of computational tools designed to help tackling these challenges. Our focus centers on two major steps that are essential to most metabolomics investigations: the translation of raw data into quantifiable features, and the extraction of structural insights from mass spectra to facilitate metabolite identification. By exploring current computational solutions, we aim at providing a critical overview of the capabilities and constraints of mass spectrometry-based metabolomics, while introduce some of the most recent trends in data processing and analysis within the field.

4.
Mol Plant ; 16(12): 1951-1961, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37897038

RESUMO

The diterpenoid paclitaxel (Taxol) is a chemotherapy medication widely used as a first-line treatment against several types of solid cancers. The supply of paclitaxel from natural sources is limited. However, missing knowledge about the genes involved in several specific metabolic steps of paclitaxel biosynthesis has rendered it difficult to engineer the full pathway. In this study, we used a combination of transcriptomics, cell biology, metabolomics, and pathway reconstitution to identify the complete gene set required for the heterologous production of paclitaxel. We identified the missing steps from the current model of paclitaxel biosynthesis and confirmed the activity of most of the missing enzymes via heterologous expression in Nicotiana benthamiana. Notably, we identified a new C4ß-C20 epoxidase that could overcome the first bottleneck of metabolic engineering. We used both previously characterized and newly identified oxomutases/epoxidases, taxane 1ß-hydroxylase, taxane 9α-hydroxylase, taxane 9α-dioxygenase, and phenylalanine-CoA ligase, to successfully biosynthesize the key intermediate baccatin III and to convert baccatin III into paclitaxel in N. benthamiana. In combination, these approaches establish a metabolic route to taxoid biosynthesis and provide insights into the unique chemistry that plants use to generate complex bioactive metabolites.


Assuntos
Biologia Sintética , Taxoides , Paclitaxel , Oxigenases de Função Mista
5.
Plant J ; 115(4): 1021-1036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272491

RESUMO

The process of crop domestication leads to a dramatic reduction in the gene expression associated with metabolic diversity. Genes involved in specialized metabolism appear to be particularly affected. Although there is ample evidence of these effects at the genetic level, a reduction in diversity at the metabolite level has been taken for granted despite having never been adequately accessed and quantified. Here we leveraged the high coverage of ultra high performance liquid chromatography-high-resolution mass spectrometry based metabolomics to investigate the metabolic diversity in the common bean (Phaseolus vulgaris). Information theory highlights a shift towards lower metabolic diversity and specialization when comparing wild and domesticated bean accessions. Moreover, molecular networking approaches facilitated a broader metabolite annotation than achieved to date, and its integration with gene expression data uncovers a metabolic shift from specialized metabolism towards central metabolism upon domestication of this crop.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Domesticação , Teoria da Informação , Metabolômica
7.
BMC Plant Biol ; 22(1): 278, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672704

RESUMO

BACKGROUND: Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry. RESULTS: Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits. CONCLUSIONS: AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.


Assuntos
Fragaria , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Azacitidina/farmacologia , Fragaria/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Physiol ; 190(1): 319-339, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35640120

RESUMO

During the maturation phase of flower development, the onset of anthesis visibly marks the transition from buds to open flowers, during which petals stretch out, nectar secretion commences, and pollination occurs. Analysis of the metabolic changes occurring during this developmental transition has primarily focused on specific classes of metabolites, such as pigments and scent emission, and far less on the whole network of primary and secondary metabolites. To investigate the metabolic changes occurring at anthesis, we performed multi-platform metabolomics alongside RNA sequencing in individual florets harvested from the main inflorescence of Arabidopsis (Arabidopsis thaliana) ecotype Col-0. To trace metabolic fluxes at the level of the whole inflorescence and individual florets, we further integrated these studies with radiolabeled experiments. These extensive analyses revealed high-energy-level metabolism and transport of carbohydrates and amino acids, supporting intense metabolic rearrangements occurring at the time of this floral transition. These comprehensive data are discussed in the context of our current understanding of the metabolic shifts underlying flower opening. We envision that this analysis will facilitate the introgression of floral metabolic traits promoting pollination in crop species for which a comprehensive knowledge of flower metabolism is still limited.


Assuntos
Flores , Polinização , Inflorescência , Odorantes , Reprodução
9.
Methods Mol Biol ; 2484: 3-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461440

RESUMO

Metabolite profiling aiming at quantifying the metabolome of flowers is emerging as a suitable tool to understand the metabolic complexity of these reproductive organs and the associations between primary and secondary metabolites which characterize them. This chapter provides a general method for the combined analyses of primary and secondary metabolites via gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-mass spectrometry (LC-MS) of flower samples. We describe the preparatory steps, the procedure of metabolites' extraction and finally provide examples of data representation. The method described here can be applied to the analysis of metabolomes of entire flowers, as well as specific flower organs.


Assuntos
Flores , Metaboloma , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos
10.
Commun Biol ; 4(1): 1222, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697384

RESUMO

The apocarotenoid zaxinone promotes growth and suppresses strigolactone biosynthesis in rice. To shed light on the mechanisms underlying its growth-promoting effect, we employed a combined omics approach integrating transcriptomics and metabolomics analysis of rice seedlings treated with zaxinone, and determined the resulting changes at the cellular and hormonal levels. Metabolites as well as transcripts analysis demonstrate that zaxinone application increased sugar content and triggered glycolysis, the tricarboxylic acid cycle and other sugar-related metabolic processes in rice roots. In addition, zaxinone treatment led to an increased root starch content and induced glycosylation of cytokinins. The transcriptomic, metabolic and hormonal changes were accompanied by striking alterations of roots at cellular level, which showed an increase in apex length, diameter, and the number of cells and cortex cell layers. Remarkably, zaxinone did not affect the metabolism of roots in a strigolactone deficient mutant, suggesting an essential role of strigolactone in the zaxinone growth-promoting activity. Taken together, our results unravel zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. Moreover, they suggest that zaxinone promotes rice growth most likely by increasing sugar uptake and metabolism, and reinforce the potential of this compound in increasing rice performance.


Assuntos
Carotenoides/farmacologia , Metaboloma , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Perfilação da Expressão Gênica , Metabolômica , Plântula/crescimento & desenvolvimento
11.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
12.
Nat Methods ; 18(7): 733-746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972782

RESUMO

Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) variants currently represent the best tools to tackle the challenges of complexity and lack of comprehensive coverage of the metabolome. UHPLC offers flexible and efficient separation coupled with high-sensitivity detection via HRMS, allowing for the detection and identification of a broad range of metabolites. Here we discuss current common strategies for UHPLC-HRMS-based metabolomics, with a focus on expanding metabolome coverage.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Espectrometria de Mobilidade Iônica/instrumentação , Espectrometria de Mobilidade Iônica/métodos , Espectroscopia de Ressonância Magnética , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray
13.
Patterns (N Y) ; 2(4): 100235, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33982025

RESUMO

The growth of plant organs is driven by cell division and subsequent cell expansion. The transition from proliferation to expansion is critical for the final organ size and plant yield. Exit from proliferation and onset of expansion is accompanied by major metabolic reprogramming, and in leaves with the establishment of photosynthesis. To learn more about the molecular mechanisms underlying the developmental and metabolic transitions important for plant growth, we used untargeted proteomics and metabolomics analyses to profile young leaves of a model plant Arabidopsis thaliana representing proliferation, transition, and expansion stages. The dataset presented represents a unique resource comprising approximately 4,000 proteins and 300 annotated small-molecular compounds measured across 6 consecutive days of leaf growth. These can now be mined for novel developmental and metabolic regulators of plant growth and can act as a blueprint for studies aimed at better defining the interface of development and metabolism in other species.

14.
Mol Plant ; 14(7): 1104-1118, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33798747

RESUMO

Protein phosphorylation is a well-established post-translational mechanism that regulates protein functions and metabolic pathways. It is known that several plant mitochondrial proteins are phosphorylated in a reversible manner. However, the identities of the protein kinases/phosphatases involved in this mechanism and their roles in the regulation of the tricarboxylic acid (TCA) cycle remain unclear. In this study, we isolated and characterized plants lacking two mitochondrially targeted phosphatases (Sal2 and PP2c63) along with pyruvate dehydrogenase kinase (PDK). Protein-protein interaction analysis, quantitative phosphoproteomics, and enzymatic analyses revealed that PDK specifically regulates pyruvate dehydrogenase complex (PDC), while PP2c63 nonspecifically regulates PDC. When recombinant PP2c63 and Sal2 proteins were added to mitochondria isolated from mutant plants, protein-protein interaction and enzymatic analyses showed that PP2c63 directly phosphorylates and modulates the activity of PDC, while Sal2 only indirectly affects TCA cycle enzymes. Characterization of steady-state metabolite levels and fluxes in the mutant lines further revealed that these phosphatases regulate flux through the TCA cycle, and that altered metabolism in the sal2 pp2c63 double mutant compromises plant growth. These results are discussed in the context of current models of the control of respiration in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ciclo do Ácido Cítrico/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Técnicas de Inativação de Genes , Mutação , Fosfoproteínas Fosfatases/genética , Desenvolvimento Vegetal , Proteína Fosfatase 2/genética , Proteína Fosfatase 2C/genética
15.
Sci Rep ; 10(1): 16455, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020558

RESUMO

The remarkable phytogeographic characteristics of the Brazilian savanna (Cerrado) resulted in a vegetation domain composed of plants with high structural and functional diversity to tolerate climate extremes. Here we used a key Cerrado species (Dipteryx alata) to evaluate if species of this domain present a mechanism of stress memory, responding more quickly and efficiently when exposed to recurrent drought episodes. The exposure of D. alata seedlings to drought resulted in several changes, mainly in physiological and biochemical traits, and these changes differed substantially when the water deficit was imposed as an isolated event or when the plants were subjected to drought cycles, suggesting the existence of a drought memory mechanism. Plants submitted to recurrent drought events were able to maintain essential processes for plant survival when compared to those submitted to drought for the first time. This differential acclimation to drought was the result of orchestrated changes in several metabolic pathways, involving differential carbon allocation for defense responses and the reprogramming and coordination of primary, secondary and antioxidant metabolism. The stress memory in D. alata is probably linked the evolutionary history of the species and reflects the environment in which it evolved.


Assuntos
Aclimatação/fisiologia , Dipteryx/fisiologia , Antioxidantes/metabolismo , Brasil , Clima , Dipteryx/metabolismo , Secas , Pradaria , Redes e Vias Metabólicas/fisiologia , Fotossíntese/fisiologia , Plântula/metabolismo , Plântula/fisiologia , Água/metabolismo
16.
Plant J ; 104(5): 1149-1168, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996222

RESUMO

Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , NAD/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Mutação , NAD/farmacologia , Estômatos de Plantas/metabolismo
17.
Expert Rev Proteomics ; 17(4): 243-255, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32380880

RESUMO

INTRODUCTION: Metabolomics has become a crucial part of systems biology; however, data analysis is still often undertaken in a reductionist way focusing on changes in individual metabolites. Whilst such approaches indeed provide relevant insights into the metabolic phenotype of an organism, the intricate nature of metabolic relationships may be better explored when considering the whole system. AREAS COVERED: This review highlights multiple network strategies that can be applied for metabolomics data analysis from different perspectives including: association networks based on quantitative information, mass spectra similarity networks to assist metabolite annotation and biochemical networks for systematic data interpretation. We also highlight some relevant insights into metabolic organization obtained through the exploration of such approaches. EXPERT OPINION: Network based analysis is an established method that allows the identification of non-intuitive metabolic relationships as well as the identification of unknown compounds in mass spectrometry. Additionally, the representation of data from metabolomics within the context of metabolic networks is intuitive and allows for the use of statistical analysis that can better summarize relevant metabolic changes from a systematic perspective.


Assuntos
Metabolômica/métodos , Sistemas de Informação , Biologia de Sistemas/métodos
18.
Plant J ; 103(4): 1614-1632, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378781

RESUMO

Phytohormones play essential roles in the regulation of growth and development in plants. Plant hormone profiling is therefore essential to understand developmental processes and the adaptation of plants to biotic and/or abiotic stresses. Interestingly, commonly used hormone extraction and profiling methods do not adequately resolve other molecular entities, such as polar metabolites, lipids, starch and proteins, which would be required to comprehensively describe the continuing biological processes at a systematic level. In this article we introduce an updated version of a previously published liquid:liquid metabolite extraction protocol, which not only allows for the profiling of primary and secondary metabolites, lipids, starch and proteins, but also enables the quantitative analysis of the major plant hormone classes, including abscisic acid, auxins, cytokinins, jasmonates and salicylates, from a single sample aliquot. The optimization of the method, which uses the introduction of acidified water, enabling the complete purification of major plant hormones into the organic (methyl-tert-butyl-ether) phase, eliminated the need for solid-phase extraction for sample clean-up, and therefore reduces both sampling time and cost. As a proof-of-concept analysis, Arabidopsis thaliana plants were subjected to water-deficit stress, which were then profiled for hormonal, metabolic, lipidomic and proteomic changes. Surprisingly, we determined not only previously described molecular changes but also significant changes regarding the breakdown of specific galactolipids, followed by the substantial accumulation of unsaturated fatty-acid derivatives and diverse jasmonates in the course of adaptation to water-deficit stress.


Assuntos
Lipídeos/análise , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/química , Proteínas de Plantas/análise , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Cromatografia Líquida de Alta Pressão , Desidratação , Espectrometria de Massas , Metaboloma , Extratos Vegetais/química , Proteômica
19.
Metabolites ; 10(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295308

RESUMO

Metabolic correlation networks have been used in several instances to obtain a deeper insight into the complexity of plant metabolism as a whole. In tomato (Solanum lycopersicum), metabolites have a major influence on taste and overall fruit quality traits. Previously a broad spectrum of metabolic and phenotypic traits has been described using a Solanum pennellii introgression-lines (ILs) population. To obtain insights into tomato fruit metabolism, we performed metabolic network analysis from existing data, covering a wide range of metabolic traits, including lipophilic and volatile compounds, for the first time. We provide a comprehensive fruit correlation network and show how primary, secondary, lipophilic, and volatile compounds connect to each other and how the individual metabolic classes are linked to yield-related phenotypic traits. Results revealed a high connectivity within and between different classes of lipophilic compounds, as well as between lipophilic and secondary metabolites. We focused on lipid metabolism and generated a gene-expression network with lipophilic metabolites to identify new putative lipid-related genes. Metabolite-transcript correlation analysis revealed key putative genes involved in lipid biosynthesis pathways. The overall results will help to deepen our understanding of tomato metabolism and provide candidate genes for transgenic approaches toward improving nutritional qualities in tomato.

20.
Phytochemistry ; 174: 112347, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203741

RESUMO

Over 8000 different flavonoids have been described and a considerable number of new flavonoid structures are being elucidated every year. The advent of metabolomics alongside the development of phytochemical genetics - wherein the genetic basis underlying the regulation of the levels of plant metabolites is determined - has provided a massive boost to such efforts. That said our understanding of the individual function(s) of the vast majority of the metabolites that constitute this important class of phytochemicals remains unknown. Here we review what is known concerning the major decorative modifications of flavonoids in plants, namely hydroxylation, glycosylation, methylation and acylation. Our major focus is with regard to the in planta function of these modified compounds, however, we also highlight the demonstrated bioactive roles which they possess. We additionally performed a comprehensive survey of the flavonoids listed in the KNApSAcK database in order to assess the frequency of occurrence of each type of flavonoid modification. We conclude that whilst considerable research has been carried out regarding the biological roles of flavonoids most studies to date have merely provided information on the compound class or sub-classes thereof as a whole with too little currently known on the specific role of individual metabolites. We, therefore, finally suggest a framework based on currently available tools by which the relative importance of the individual compounds can be assessed under various biological conditions in order to fill this knowledge-gap.


Assuntos
Flavonoides , Plantas , Acilação , Glicosilação , Compostos Fitoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...