Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629549

RESUMO

Backup rolls are the main tool in a four-high rolling mill; the rolling forces applied in load cells promote the fatigue of the material due to mechanical contact between backup rolls and work rolls. This work investigated the causes of recurrent failures in backup rolls, with cracking always initiated on the surface of the roll body and finishing in the main radius between neck and roll body. Aiming to find the causes of failure, visual inspection and morphology of the fracture were performed, complemented with mechanical tests of hardness on the stress concentration area, in addition to validating the results by applying the finite element method, using ANSYS Mechanical Static Structural Software. It was concluded that the fatigue crack initiated on the surface of BUR due to work hardening continued growing up over the fatigued material, creating beach marks, and finally, a fracture occurred in the main radius of BUR due to stress concentration. The work hardening is the main cause of spalling on BURs and other mechanical components exposed to mechanical contact.

2.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832438

RESUMO

The complete rolling schedule (25 passes) of steel beams in a mill was simulated to predict the final beam length, geometry of the cross-section, effective stress, effective plastic strain and rolling power for two cases; the first case corresponds to the hot rolling process assuming a constant temperature of 1200 ∘C. The simulation of the second case considered the real beam temperature at each pass to compare the results with in-plant measurements and validate the numerical model. Then, the results of both cases were compared to determine the critical passes of the process with high peaks of required power, coinciding with the reports at the mill. These critical passes share the same conditions, high percentage of reduction in cross-sectional area and low beam temperature. Additionally, a potential reduction of passes in the process was proposed identifying passes with low required power, minimal reduction in area of cross-section and essentially unchanged geometry. Therefore, it is reasonable to state that using the present research methodology, it is possible to have a better control of the process allowing innovation in the production of profiles with more complex geometries and new materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...