Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2764: 179-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393596

RESUMO

Cells within a tumor interact by generating, transmitting, and sensing mechanical forces. Among all the cells of the tumor microenvironment, cancer-associated fibroblasts (CAFs) are a paradigmatic example of mechanical communication. In different steps of tumor progression, CAFs pull and push on cancer cells, regulating cancer cell migration, invasion, compartmentalization, and signaling. There is thus an increasing need to experimentally address mechanical interactions within a tumor. A common technique to measure these interactions is laser ablation. Cutting a tissue region with a high-power laser triggers a sudden tissue displacement whose direction and magnitude reveal the local mechanical stresses. In this chapter, we provide a detailed protocol to perform laser ablations in vitro and ex vivo. First, we describe how to prepare cocultures of primary CAFs and cancer cells and tumor explants. Then, we explain how to perform laser ablations in these two systems and how to analyze the induced tissue displacements using particle image velocimetry (PIV). Overall, we provide a workflow to perform, analyze, and interpret laser ablations to explore tumor mechanical interactions.


Assuntos
Fibroblastos Associados a Câncer , Terapia a Laser , Neoplasias , Humanos , Fibroblastos Associados a Câncer/patologia , Fibroblastos/patologia , Neoplasias/patologia , Técnicas de Cocultura , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento Celular
2.
Nat Cell Biol ; 26(2): 207-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302719

RESUMO

Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.


Assuntos
Folículo Piloso , Mamíferos , Animais , Forma Celular , Epitélio , Morfogênese , Divisão Celular , Folículo Piloso/metabolismo
3.
Nat Commun ; 14(1): 6966, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907483

RESUMO

During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/patologia , Mecanotransdução Celular , Linhagem Celular Tumoral , Fibroblastos/patologia , Microambiente Tumoral , Neoplasias/patologia
4.
Bull Malays Math Sci Soc ; 46(2): 61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685260

RESUMO

The statistical inference of multi-component reliability stress-strength system with nonidentical-component strengths is considered for the modified Weibull extension distribution in the presence of progressive censoring samples. For this aim, we study the estimation of multi-component reliability parameter in classical and Bayesian inference. So we derive some point and interval estimates such as maximum likelihood estimation, asymptotic confidence intervals, uniformly minimum variance unbiased estimation, approximate and exact Bayes estimation and highest posterior density intervals. Comparing of different estimates is provided by employing the Monte Carlo simulation, the mean squared error and coverage probabilities. Finally, one real data is utilized to illustrate the applicability of this new model.

5.
STAR Protoc ; 4(1): 102022, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638019

RESUMO

The microenvironment plays an essential role in tumor development and metastatic progression. Here, we describe a simple and rapid protocol to generate tumors in mice using colon cancer cell lines or tumoroids in the correct microenvironment, colonic mucosa. We also detail steps for monitoring the growth of the primary tumor in real time using colonoscopy or in vivo imaging system, as well as monitoring metastasis development. Finally, we describe tissue collection and sample preparation for subsequent immunohistochemistry analysis.


Assuntos
Neoplasias do Colo , Camundongos , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Microambiente Tumoral
6.
EMBO Mol Med ; 14(9): e15670, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069081

RESUMO

Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs.


Assuntos
Centrossomo , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular , Centrossomo/metabolismo , Centrossomo/patologia , Feminino , Humanos , Neoplasias Ovarianas/patologia
7.
Eur J Cell Biol ; 101(4): 151274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36152392

RESUMO

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin ß1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.


Assuntos
Fator de Crescimento Epidérmico , Células Epiteliais , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Miosinas
8.
Nat Mater ; 21(10): 1200-1210, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35637338

RESUMO

Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.


Assuntos
Colágeno , Matriz Extracelular , Movimento Celular , Fenômenos Mecânicos
9.
Eur J Investig Health Psychol Educ ; 12(3): 344-346, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323211

RESUMO

The main purpose of social science education is the formation of social thought for the understanding of reality from its critical and creative dimensions and for the intervention and democratic participation of a responsible and committed citizenship; that is, the formation of citizens capable of living democratically with each other and of participating in the social, labor, cultural, and political life of their world, and trying to improve it [...].

10.
Curr Opin Genet Dev ; 72: 82-90, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902705

RESUMO

The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.


Assuntos
Mucosa Intestinal , Organoides , Biofísica , Movimento Celular/genética , Mucosa Intestinal/metabolismo
11.
Front Microbiol ; 12: 732961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737729

RESUMO

Microorganisms are ubiquitous in the environment, and the atmosphere is no exception. However, airborne bacterial communities are some of the least studied. Increasing our knowledge about these communities and how environmental factors shape them is key to understanding disease outbreaks and transmission routes. We describe airborne bacterial communities at two different sites in Tenerife, La Laguna (urban, 600 m.a.s.l.) and Izaña (high mountain, 2,400 m.a.s.l.), and how they change throughout the year. Illumina MiSeq sequencing was used to target 16S rRNA genes in 293 samples. Results indicated a predominance of Proteobacteria at both sites (>65%), followed by Bacteroidetes, Actinobacteria, and Firmicutes. Gammaproteobacteria were the most frequent within the Proteobacteria phylum during spring and winter, while Alphaproteobacteria dominated in the fall and summer. Within the 519 genera identified, Cellvibrio was the most frequent during spring (35.75%) and winter (30.73%); Limnobacter (24.49%) and Blastomonas (19.88%) dominated in the summer; and Sediminibacterium represented 10.26 and 12.41% of fall and winter samples, respectively. Sphingomonas was also identified in 17.15% of the fall samples. These five genera were more abundant at the high mountain site, while other common airborne bacteria were more frequent at the urban site (Kocuria, Delftia, Mesorhizobium, and Methylobacterium). Diversity values showed different patterns for both sites, with higher values during the cooler seasons in Izaña, whereas the opposite was observed in La Laguna. Regarding wind back trajectories, Tropical air masses were significantly different from African ones at both sites, showing the highest diversity and characterized by genera regularly associated with humans (Pseudomonas, Sphingomonas, and Cloacibacterium), as well as others related to extreme conditions (Alicyclobacillus) or typically associated with animals (Lachnospiraceae). Marine and African air masses were consistent and very similar in their microbial composition. By contrast, European trajectories were dominated by Cellvibrio, Pseudomonas, Pseudoxanthomonas, and Sediminibacterium. These data contribute to our current state of knowledge in the field of atmospheric microbiology. However, future studies are needed to increase our understanding of the influence of different environmental factors on atmospheric microbial dispersion and the potential impact of airborne microorganisms on ecosystems and public health.

12.
Nat Cell Biol ; 23(7): 745-757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155382

RESUMO

Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium.


Assuntos
Movimento Celular , Células Epiteliais/fisiologia , Mucosa Intestinal/fisiologia , Mecanotransdução Celular , Animais , Comunicação Celular , Junções Célula-Matriz/fisiologia , Células Cultivadas , Simulação por Computador , Células Epiteliais/metabolismo , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos Transgênicos , Microscopia Confocal , Modelos Biológicos , Organoides , Estresse Mecânico , Tensão Superficial , Fatores de Tempo
13.
Proc Biol Sci ; 288(1942): 20201905, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33402065

RESUMO

Echolocating animals that forage in social groups can potentially benefit from eavesdropping on other group members, cooperative foraging or social defence, but may also face problems of acoustic interference and intra-group competition for prey. Here, we investigate these potential trade-offs of sociality for extreme deep-diving Blainville's and Cuvier's beaked whales. These species perform highly synchronous group dives as a presumed predator-avoidance behaviour, but the benefits and costs of this on foraging have not been investigated. We show that group members could hear their companions for a median of at least 91% of the vocal foraging phase of their dives. This enables whales to coordinate their mean travel direction despite differing individual headings as they pursue prey on a minute-by-minute basis. While beaked whales coordinate their echolocation-based foraging periods tightly, individual click and buzz rates are both independent of the number of whales in the group. Thus, their foraging performance is not affected by intra-group competition or interference from group members, and they do not seem to capitalize directly on eavesdropping on the echoes produced by the echolocation clicks of their companions. We conclude that the close diving and vocal synchronization of beaked whale groups that quantitatively reduces predation risk has little impact on foraging performance.


Assuntos
Ecolocação , Baleias , Acústica , Animais , Comportamento Predatório , Vocalização Animal
14.
Nat Phys ; 15(1): 79-88, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31537984

RESUMO

Development, regeneration and cancer involve drastic transitions in tissue morphology. In analogy with the behavior of inert fluids, some of these transitions have been interpreted as wetting transitions. The validity and scope of this analogy are unclear, however, because the active cellular forces that drive tissue wetting have been neither measured nor theoretically accounted for. Here we show that the transition between two-dimensional epithelial monolayers and three-dimensional spheroidal aggregates can be understood as an active wetting transition whose physics differs fundamentally from that of passive wetting phenomena. By combining an active polar fluid model with measurements of physical forces as a function of tissue size, contractility, cell-cell and cell-substrate adhesion, and substrate stiffness, we show that the wetting transition results from the competition between traction forces and contractile intercellular stresses. This competition defines a new intrinsic lengthscale that gives rise to a critical size for the wetting transition in tissues, a striking feature that has no counterpart in classical wetting. Finally, we show that active shape fluctuations are dynamically amplified during tissue dewetting. Overall, we conclude that tissue spreading constitutes a prominent example of active wetting - a novel physical scenario that may explain morphological transitions during tissue morphogenesis and tumor progression.

15.
BMC Bioinformatics ; 20(1): 234, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072312

RESUMO

BACKGROUND: The Oxford Nanopore Technologies (ONT) MinION portable sequencer makes it possible to use cutting-edge genomic technologies in the field and the academic classroom. RESULTS: We present NanoDJ, a Jupyter notebook integration of tools for simplified manipulation and assembly of DNA sequences produced by ONT devices. It integrates basecalling, read trimming and quality control, simulation and plotting routines with a variety of widely used aligners and assemblers, including procedures for hybrid assembly. CONCLUSIONS: With the use of Jupyter-facilitated access to self-explanatory contents of applications and the interactive visualization of results, as well as by its distribution into a Docker software container, NanoDJ is aimed to simplify and make more reproducible ONT DNA sequence analysis. The NanoDJ package code, documentation and installation instructions are freely available at https://github.com/genomicsITER/NanoDJ .


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Análise de Sequência de DNA/métodos
16.
Development ; 146(1)2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30552127

RESUMO

Vertebrates have evolved the most sophisticated nervous systems we know. These differ from the nervous systems of invertebrates in several ways, including the evolution of new cell types, and the emergence and elaboration of patterning mechanisms to organise cells in time and space. Vertebrates also generally have many more cells in their central nervous systems than invertebrates, and an increase in neural cell number may have contributed to the sophisticated anatomy of the brain and spinal cord. Here, we study how increased cell number evolved in the vertebrate central nervous system, investigating the regulation of cell proliferation in the lamprey spinal cord. Markers of proliferation show that a ventricular progenitor zone is found throughout the lamprey spinal cord. We show that inhibition of Notch signalling disrupts the maintenance of this zone. When Notch is blocked, progenitor cells differentiate precociously, the proliferative ventricular zone is lost and differentiation markers become expressed throughout the spinal cord. Comparison with other chordates suggests that the emergence of a persistent Notch-regulated proliferative progenitor zone was a crucial step for the evolution of vertebrate spinal cord complexity.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Peixes/metabolismo , Lampreias/embriologia , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/embriologia , Animais , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Medula Espinal/citologia
17.
J Cell Biol ; 217(9): 3031-3044, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29980627

RESUMO

Mesenchymal cell migration relies on the coordinated regulation of the actin and microtubule networks that participate in polarized cell protrusion, adhesion, and contraction. During collective migration, most of the traction forces are generated by the acto-myosin network linked to focal adhesions at the front of leader cells, which transmit these pulling forces to the followers. Here, using an in vitro wound healing assay to induce polarization and collective directed migration of primary astrocytes, we show that the intermediate filament (IF) network composed of vimentin, glial fibrillary acidic protein, and nestin contributes to directed collective movement by controlling the distribution of forces in the migrating cell monolayer. Together with the cytoskeletal linker plectin, these IFs control the organization and dynamics of the acto-myosin network, promoting the actin-driven treadmilling of adherens junctions, thereby facilitating the polarization of leader cells. Independently of their effect on adherens junctions, IFs influence the dynamics and localization of focal adhesions and limit their mechanical coupling to the acto-myosin network. We thus conclude that IFs promote collective directed migration in astrocytes by restricting the generation of traction forces to the front of leader cells, preventing aberrant tractions in the followers, and by contributing to the maintenance of lateral cell-cell interactions.


Assuntos
Astrócitos/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Filamentos Intermediários/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Nestina/metabolismo , Ratos , Vimentina/metabolismo , Cicatrização/fisiologia
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2409-2419, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684587

RESUMO

Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required for breast cancer metastasis in vitro and in vivo. Here, we show that TRPM7 contributes to maintaining a mesenchymal phenotype in breast cancer cells by tensional regulation of the EMT transcription factor SOX4. The functional consequences of SOX4 knockdown closely mirror those produced by TRPM7 knockdown. By traction force measurements, we demonstrate that TRPM7 reduces cytoskeletal tension through inhibition of myosin II activity. Moreover, we show that SOX4 expression and downstream mesenchymal markers are inversely regulated by cytoskeletal tension and matrix rigidity. Overall, our results identify SOX4 as a transcription factor that is uniquely sensitive to cellular tension and indicate that TRPM7 may contribute to breast cancer progression by tensional regulation of SOX4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOXC/metabolismo , Canais de Cátion TRPM/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXC/genética , Canais de Cátion TRPM/genética , Resistência à Tração
19.
Mol Biol Cell ; 28(14): 1847-1852, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28251923

RESUMO

Fundamental processes in cell adhesion, motility, and rigidity adaptation are regulated by integrin-mediated adhesion to the extracellular matrix (ECM). The link between the ECM component fibronectin (fn) and integrin α5ß1 forms a complex with ZO-1 in cells at the edge of migrating monolayers, regulating cell migration. However, how this complex affects the α5ß1-fn link is unknown. Here we show that the α5ß1/ZO-1 complex decreases the resistance to force of α5ß1-fn adhesions located at the edge of migrating cell monolayers while also increasing α5ß1 recruitment. Consistently with a molecular clutch model of adhesion, this effect of ZO-1 leads to a decrease in the density and intensity of adhesions in cells at the edge of migrating monolayers. Taken together, our results unveil a new mode of integrin regulation through modification of the mechanical properties of integrin-ECM links, which may be harnessed by cells to control adhesion and migration.


Assuntos
Integrina alfa5beta1/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Movimento Celular , Cricetulus , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fibronectinas/fisiologia , Humanos , Integrina alfa5beta1/fisiologia , Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Ligação Proteica , Proteína da Zônula de Oclusão-1/fisiologia
20.
Nat Cell Biol ; 18(5): 540-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27065098

RESUMO

Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.


Assuntos
Matriz Extracelular/metabolismo , Mecanotransdução Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrinas/metabolismo , Camundongos , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Fibras de Estresse/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...