Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 149: 213414, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031611

RESUMO

The formulation of hydrogels that meet the necessary flow characteristics for their extrusion-based 3D printing while providing good printability, resolution, accuracy and stability, requires long development processes. This work presents the technological development of a hydrogel-based ink of Laponite and alginate and evaluates its printing capacity. As a novelty, this article reports a standardizable protocol to quantitatively define the best printing parameters for the development of novel inks, providing new printability evaluation parameters such as the Printing Accuracy Escalation Index. As a result, this research develops a printable Laponite-Alginate hydrogel that presents printability characteristics. This ink is employed for the reproducible manufacture of 3D printed scaffolds with versatile and complex straight or curved printing patterns for a better adaptation to different final applications. Obtained constructs prove to be stable over time thanks to the optimization of a curing process. In addition, the study of the swelling and degradation behavior of the Laponite and alginate 3D printed scaffolds in different culture media allows the prediction of their behavior in future in vitro or in vivo developments. Finally, this study demonstrates the absence of cytotoxicity of the printed formulations, hence, setting the stage for their use in the field of biomedicine.


Assuntos
Hidrogéis , Tinta , Alginatos , Alicerces Teciduais , Impressão Tridimensional
2.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269978

RESUMO

In patients with comorbidities, a large number of wounds become chronic, representing an overwhelming economic burden for healthcare systems. Engineering the microenvironment is a paramount trend to activate cells and burst-healing mechanisms. The extrusion bioprinting of advanced dressings was performed with novel composite bioinks made by blending adipose decellularized extracellular matrix with plasma and human dermal fibroblasts. Rheological and microstructural assessments of the composite hydrogels supported post-printing cell viability and proliferation over time. Embedded fibroblasts expressed steady concentrations of extracellular matrix proteins, including type 1, 3 and 4 collagens and fibronectin. ELISA assessments, multiplex protein arrays and ensuing bioinformatic analyses revealed paracrine activities corresponding to wound-healing activation through the modulation of inflammation and angiogenesis. The two modalities of advanced dressings, differing in platelet number, showed differences in the release of inflammatory and angiogenic cytokines, including interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conditioned media stimulated human-dermal-cell proliferation over time. Our findings open the door to engineering the microenvironment as a strategy to enhance healing.


Assuntos
Bioimpressão , Bandagens , Matriz Extracelular/metabolismo , Humanos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Oncol Lett ; 23(5): 140, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35340556

RESUMO

The incidence rates of melanoma have increased steadily in recent decades and nearly 25% of the patients diagnosed with early-stage melanoma will eventually develop metastasis, for which there is currently no fully effective treatment. The link between phospholipases and tumors has been studied extensively, particularly in breast and colon cancers. With the aim of finding new biomarkers and therapeutic options for melanoma, the expression of different phospholipases was assessed in 17 distinct cell lines in the present study, demonstrating that phospholipase D2 (PLD2) is upregulated in metastatic melanoma as compared to normal skin melanocytes. These results were corroborated by immunofluorescence and lipase activity assays. Upregulation of PLD2 expression and increased lipase activity were observed in metastatic melanoma relative to normal skin melanocytes. So far, the implication of PLD2 activity in melanoma malignancies has remained elusive. To the best of our knowledge, the present study was the first to demonstrate that the overexpression of PLD2 enhances lipase activity, and its effect to increase the proliferation, migration and invasion capacity of melanoma cells was assessed with XTT and Transwell assays. In addition, silencing of PLD2 in melanoma cells reduced the metastatic potential of these cells. The present study provided evidence that PLD2 is involved in melanoma malignancy and in particular, in its metastatic potential, and established a basis for future studies evaluating PLD2 blockade as a therapeutic strategy to manage this condition.

4.
J Clin Med ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159924

RESUMO

Platelets and their secretory products play an important role in determining the balance between tissue repair and tissue damage. To obtain novel insights into the molecular composition of platelet-rich plasma (PRP) and contextualize them in knee osteoarthritis (OA), two different plasma formulations, namely PRP and platelet-poor plasma (PPP), were prepared from six healthy donors following a biobank-automated protocol. Inter-donor differences were analyzed, and pools were created before performing multiplexing protein arrays. In addition, PRP and PPP were prepared from six patients following our in-house protocols. Supernatants from PRP and PPP were harvested one hour after calcium chloride activation. Multiplexing protein arrays were performed in parallel for all plasma formulations. Results were normalized to fold change in relation to PPP and examined using Ingenuity Pathway Analysis Software. Bioinformatic predictions showed that PRPs constitute a signaling system with interrelated networks of inflammatory and angiogenic proteins, including but not limited to interleukin-6 and -8 (IL-6, IL-8), insulin like growth factor 1 (IGF-1), transforming growth factor beta, (TGF-b), and vascular endothelial growth factor (VEGF) signaling, underlying biological actions. Predictions of canonical systems activated with PRP molecules include various inflammatory pathways, including high-mobility group box protein (HMGB1) and interleukin 17 (IL-17) signaling, neuroinflammation, and nuclear factor-kappa b (NF-κB) pathways. Eventually, according to these predictions and OA evolving knowledge, selected PRP formulations should be tailored to modulate different inflammatory phenotypes, i.e., meta-inflammation, inflame-aging or posttraumatic inflammatory osteoarthritis. However, further research to discriminate the peculiarities of autologous versus allogeneic formulations and their effects on the various OA inflammatory phenotypes is needed to foster PRPs.

5.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769491

RESUMO

Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the "malignancy lipid signature" features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Lipidômica/métodos , Lipídeos/análise , Melanócitos/metabolismo , Melanoma/patologia , Redes e Vias Metabólicas , Neoplasias Cutâneas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Biologia Computacional , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
6.
Biomedicines ; 9(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440227

RESUMO

Extrusion bioprinting based on the development of novel bioinks offers the possibility of manufacturing clinically useful tools for wound management. In this study, we show the rheological properties and printability outcomes of two advanced dressings based on platelet-rich plasma (PRP) and platelet-poor plasma (PPP) blended with alginate and loaded with dermal fibroblasts. Measurements taken at 1 h, 4 days, and 18 days showed that both the PRP- and PPP-based dressings retain plasma and platelet proteins, which led to the upregulation of angiogenic and immunomodulatory proteins by embedded fibroblasts (e.g., an up to 69-fold increase in vascular endothelial growth factor (VEGF), an up to 188-fold increase in monocyte chemotactic protein 1 (MCP-1), and an up to 456-fold increase in hepatocyte growth factor (HGF) 18 days after printing). Conditioned media harvested from both PRP and PPP constructs stimulated the proliferation of human umbilical vein endothelial cells (HUVECs), whereas only those from PRP dressings stimulated HUVEC migration, which correlated with the VEGF/MCP-1 and VEGF/HGF ratios. Similarly, the advanced dressings increased the level of interleukin-8 and led to a four-fold change in the level of extracellular matrix protein 1. These findings suggest that careful selection of plasma formulations to fabricate wound dressings can enable regulation of the molecular composition of the microenvironment, as well as paracrine interactions, thereby improving the clinical potential of dressings and providing the possibility to tailor each composition to specific wound types and healing stages.

7.
Sci Rep ; 11(1): 3583, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574425

RESUMO

Human sperm protein associated with the nucleus on the X chromosome (SPANX) genes encode a protein family (SPANX-A, -B, -C and -D), whose expression is limited to the testis and spermatozoa in normal tissues and various tumour cells. SPANX-A/D proteins have been detected in metastatic melanoma cells, but their contribution to cancer development and the underlying molecular mechanisms of skin tumourigenesis remain unknown. Combining functional and proteomic approaches, the present work describes the presence of SPANX-A/D in primary and metastatic human melanoma cells and how it promotes pro-tumoural processes such as cell proliferation, motility and migration. We provide insights into the molecular features of skin tumourigenesis, describing for the first time a multifunctional role of the SPANX-A/D protein family in nuclear function, energy metabolism and cell survival, considered key hallmarks of cancer. A better comprehension of the SPANX-A/D protein subfamily and its molecular mechanisms will help to describe new aspects of tumour cell biology and develop new therapeutic targets and tumour-directed pharmacological drugs for skin tumours.


Assuntos
Carcinogênese/genética , Melanoma/genética , Proteínas Nucleares/genética , Proteômica , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Núcleo Celular/patologia , Cromossomos Humanos X/genética , Humanos , Masculino , Melanoma/patologia , Proteínas Nucleares/classificação , Homologia de Sequência de Aminoácidos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/crescimento & desenvolvimento , Testículo/patologia
8.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932676

RESUMO

Bioprinting technologies, which have the ability to combine various human cell phenotypes, signaling proteins, extracellular matrix components, and other scaffold-like biomaterials, are currently being exploited for the fabrication of human skin in regenerative medicine. We performed a systematic review to appraise the latest advances in 3D bioprinting for skin applications, describing the main cell phenotypes, signaling proteins, and bioinks used in extrusion platforms. To understand the current limitations of this technology for skin bioprinting, we briefly address the relevant aspects of skin biology. This field is in the early stage of development, and reported research on extrusion bioprinting for skin applications has shown moderate progress. We have identified two major trends. First, the biomimetic approach uses cell-laden natural polymers, including fibrinogen, decellularized extracellular matrix, and collagen. Second, the material engineering line of research, which is focused on the optimization of printable biomaterials that expedite the manufacturing process, mainly involves chemically functionalized polymers and reinforcement strategies through molecular blending and postprinting interventions, i.e., ionic, covalent, or light entanglement, to enhance the mechanical properties of the construct and facilitate layer-by-layer deposition. Skin constructs manufactured using the biomimetic approach have reached a higher level of complexity in biological terms, including up to five different cell phenotypes and mirroring the epidermis, dermis and hypodermis. The confluence of the two perspectives, representing interdisciplinary inputs, is required for further advancement toward the future translation of extrusion bioprinting and to meet the urgent clinical demand for skin equivalents.


Assuntos
Bioimpressão/métodos , Pele/citologia , Animais , Materiais Biocompatíveis/química , Biomimética/métodos , Humanos , Polímeros/química , Impressão Tridimensional , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Int J Mol Sci ; 21(18)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962283

RESUMO

The complex biology of platelets and their involvement in tissue repair and inflammation have inspired the development of platelet-rich plasma (PRP) therapies for a broad array of medical needs. However, clinical advances are hampered by the fact that PRP products, doses and treatment protocols are far from being standardized. Freeze-drying PRP (FD-PRP) preserves platelet function, cytokine concentration and functionality, and has been proposed as a consistent method for product standardization and fabrication of an off-the-shelf product with improved stability and readiness for future uses. Here, we present the current state of experimental and clinical FD-PRP research in the different medical areas in which PRP has potential to meet prevailing medical needs. A systematic search, according to PRISMA (Preferred Reported Items for Systematic Reviews and Meta-Analyses) guidelines, showed that research is mostly focused on wound healing, i.e., developing combination products for ulcer management. Injectable hydrogels are investigated for lumbar fusion and knee conditions. In dentistry, combination products permit slow kinetics of growth factor release and functionalized membranes for guided bone regeneration.


Assuntos
Plaquetas , Preservação de Sangue/normas , Plasma Rico em Plaquetas/química , Plaquetas/química , Plaquetas/metabolismo , Regeneração Óssea/efeitos dos fármacos , Liofilização/normas , Humanos , Padrões de Referência , Cicatrização/efeitos dos fármacos
10.
J Am Soc Mass Spectrom ; 31(3): 517-526, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126773

RESUMO

Imaging mass spectrometry (IMS) is becoming an essential technique in lipidomics. Still, many questions remain open, precluding it from achieving its full potential. Among them, identification of species directly from the tissue is of paramount importance. However, it is not an easy task, due to the abundance and variety of lipid species, their numerous fragmentation pathways, and the formation of a significant number of adducts, both with the matrix and with the cations present in the tissue. Here, we explore the fragmentation pathways of 17 lipid classes, demonstrating that in-source fragmentation hampers identification of some lipid species. Then, we analyze what type of adducts each class is more prone to form. Finally, we use that information together with data from on-tissue MS/MS and MS3 to refine the peak assignment in a real experiment over sections of human nevi, to demonstrate that statistical analysis of the data is significantly more robust if unwanted peaks due to fragmentation, matrix, and other species that only introduce noise in the analysis are excluded.


Assuntos
Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cátions/análise , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Espectrometria de Massas em Tandem/métodos
11.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963580

RESUMO

The use of platelet-rich fibrin (PRF) is investigated in ulcer management because it provides a healing milieu rich in growth factors and cytokines. Although crucial, the relevance of secondary dressings is under-researched and no data support the use of any particular dressing in preference to another. We assessed the properties of different dressing categories, including alginates, hydrocolloids, foams, hydrofibers, films, meshes and gauzes, in terms of affinity for PRF, releasate management (retention/extrusion) and the kinetics of cytokine release as well as the influence of each combination product, [PRF + dressing], on dermal cell behaviour, aiming to provide useful information for choosing the most adequate dressing for each particular patient. Active dressings including alginates, hydrofibers, foams and hydrocolloids blend with PRF, creating a diverse combination of products with different performances. Alginate and hydrofiber showed the highest affinity but moderate retention of releasate, without interfering with cell functions. Instead, the foam sequestered the releasate and hindered the release of growth factors, thereby compromising cell activities. Film and mesh presented very poor releasate retention and performed similarly to PRF by itself. Affinity index and releasate management explained 79% of platelet-derived growth factor (PDGF-BB) concentration variability, p < 0.001. Cell proliferation depended on the ability of the combination product to retain/release supernatant, PDGF-BB concentration and cell adhesion R2 = 0.91, p = 0.014.


Assuntos
Bandagens , Becaplermina/metabolismo , Derme/citologia , Fibroblastos/citologia , Fibrina Rica em Plaquetas/metabolismo , Cicatrização , Adulto , Plaquetas/metabolismo , Proliferação de Células , Derme/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade
12.
ACS Appl Mater Interfaces ; 10(9): 8165-8172, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29390182

RESUMO

Disk-shaped magnetic nanostructures present distinctive features for novel biomedical applications. Fine tuning of geometry and dimensions is demanded to evaluate efficiency and capability of such applications. This work addresses a cost-effective, versatile, and maskless design of biocompatible high-magnetic moment elements at the sub-micrometer scale. Advantages and disadvantages of two high throughput fabrication routes using interference lithography were evaluated. Detrimental steps such as the release process of nanodisks into aqueous solution were optimized to fully preserve the magnetic properties of the material. Then, cell viability of the nanostructures was assessed in primary melanoma cultures. No toxicity effects were observed, validating the potential of these nanostructures in biotechnological applications. The present methodology will allow the fabrication of magnetic nanoelements at the sub-micrometer scale with unique spin configurations, such as vortex state, synthetic antiferromagnets, or exchange-coupled heterostructures, and their use in biomedical techniques that require a remote actuation or a magneto-electric response.


Assuntos
Nanoestruturas , Biotecnologia , Magnetismo , Impressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...