Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ayurveda Integr Med ; 15(1): 100850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219436

RESUMO

BACKGROUND: Oxidized LDL (OxLDL), the key player in atherogenesis modulates endothelial dysfunction, initiates monocyte recruitment, accentuates foam cell formation, and flares up inflammatory and apoptotic events. Even though homeopathic preparation of Allium sativum has been proved to be an anti-inflammatory, anti-apoptotic and anti-atherogenic agent, its mechanism of action on abrogating OxLDL mediated foam cell formation is yet to be explored. OBJECTIVE: This study was designed to bring out the role of homeopathic preparation of Allium sativum in curbing OxLDL mediated cellular inflammation in IC-21 cells exposed with OxLDL. MATERIALS AND METHODS: OxLDL was used to induce oxidative damage in the IC-21 macrophage cells. Assessment of inflammatory cytokines, localization of NFκB, detection of apoptosis and the in silico analysis were performed in this study. RESULTS: The current study portrays the efficacy of homeopathy medicine as an anti-inflammatory agent, in reducing the levels of inflammatory cytokines and its mRNA expression, suppressing the activity of NFκB and preventing apoptosis in OxLDL treated IC-21 cells. CONCLUSION: To conclude, homeopathic preparation of Allium sativum 6C and 30C potencies are capable of controlling the transcriptional activity of NFκB and apoptosis in IC-21 cells exposed to OxLDL. These results implicate that Allium sativum homeopathic drug can be used as anti-inflammatory agent in reducing atherogenic events as it is capable of preventing OxLDL-mediated injury to macrophages.

2.
J Biochem Mol Toxicol ; 36(7): e23050, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35343011

RESUMO

Type 1 diabetes is a chronic immune-mediated disease caused by pancreatic ß-cell dysfunction with consequent severe insulin deficiency. Exacerbated blood glucose levels can cause oxidative stress in the pancreatic ß-cells, which leads to inflammation, and apoptosis resulting in islet dysfunction. Although massive studies have been carried out to elucidate the causative factors for ß-cell damage in diabetes, the therapeutic approach to pancreatic ß-cell damage has not been extensively studied. Hence, the present study has been designed to delineate the role of gymnemic acid (GA) in protecting pancreatic ß-cells in diabetic animals, with special reference to inflammation and apoptosis. Our data revealed that the treatment with GA significantly reverted the alteration in both biochemical and histochemical observations in young diabetic rats. Moreover, treatment with the GA downregulates the expression of proinflammatory markers (nuclear factor-κB, tumor necrosis factor-α, interleukin-[IL]-6, and IL-1ß), proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), as well as upregulates the expression of antiapoptotic protein Bcl-2 in diabetic rats. These findings suggest that the anti-inflammatory and antiapoptotic nature of GA mitigates ß-cell damage in hyperglycemic rats.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Triterpenos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Glicemia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inflamação , Estresse Oxidativo , Ratos , Saponinas/farmacologia , Triterpenos/farmacologia
3.
Tissue Eng Regen Med ; 19(3): 603-616, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35212973

RESUMO

BACKGROUND: Endogenous pancreatic ß-cell regeneration is a promising therapeutic approach for enhancing ß-cell function and neogenesis in diabetes. Various findings have reported that regeneration might occur via stimulating ß-cell proliferation, neogenesis, or conversion from other pancreatic cells to ß-like cells. Although the current scenario illustrates numerous therapeutic strategies and approaches that concern endogenous ß-cell regeneration, all of them have not been successful to a greater extent because of cost effectiveness, availability of suitable donors and rejection in case of transplantation, or lack of scientific evidence for many phytochemicals derived from plants that have been employed in traditional medicine. Therefore, the present study aims to investigate the effect of gymnemic acid (GA) on ß-cell regeneration in streptozotocin-induced type 1 diabetic rats and high glucose exposed RIN5-F cells. METHODS: The study involves histopathological and immunohistochemical analysis to examine the islet's architecture. Quantitative polymerase chain reaction (qPCR) and/or immunoblot were employed to quantify the ß-cell regeneration markers and cell cycle proliferative markers. RESULTS: The immunoexpression of E-cadherin, ß-catenin, and phosphoinositide 3-kinases/protein kinase B were significantly increased in GA-treated diabetic rats. On the other hand, treatment with GA upregulated the pancreatic regenerative transcription factor viz. pancreatic duodenal homeobox 1, Neurogenin 3, MafA, NeuroD1, and ß-cells proliferative markers such as CDK4, and Cyclin D1, with a simultaneous downregulation of the forkhead box O, glycogen synthase kinase-3, and p21cip1 in diabetic treated rats. Adding to this, we noticed increased nuclear localization of Pdx1 in GA treated high glucose exposed RIN5-F cells. CONCLUSION: Our results suggested that GA acts as a potential therapeutic candidate for endogenous ß-cell regeneration in treating type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Ratos , Regeneração , Saponinas , Triterpenos
4.
J Trace Elem Med Biol ; 69: 126882, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710708

RESUMO

Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.


Assuntos
Hepcidinas , Ferro , Proteínas de Transporte de Cátions , Ferro da Dieta , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Oxigênio
5.
Front Cardiovasc Med ; 9: 1046436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776944

RESUMO

The reported incidence of liposarcomas in ~2,000 cases annually results in about 30% of myxoid liposarcomas. Cardiac myoxid liposarcomas are very rare; their presentation could be cardiac tamponade, due to direct compression of the tumor and/or pericardial effusion. In this report, we describe a patient who presented with pericardial effusion secondary to myoxid liposarcomas from the right atrium, an extremely rare presentation of liposarcomas in the heart. We also present non-invasive imaging through echocardiography, CECT thorax and FDG PET scans, followed by a CT-guided mass biopsy. Histopathology of the right atrial mass demonstrated myxoid liposarcoma positive for the S100 tumor marker.

6.
Free Radic Biol Med ; 160: 227-238, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32768570

RESUMO

Diabetic nephropathy (DN), a progressive kidney disease afflicts more than 20 and up to 40% of the diabetic population and it is characterized by persistent microalbuminuria declined glomerular filtration rate. The interesting feature associated with DN is that, even though the progression of the disease correlates with oxidative stress, Nrf2, the master regulator of antioxidant defense system involved in counteracting oxidative stress is also upregulated in the diabetic kidneys of both human as well as experimental animals in early stages of DN. Despite the increased expression, the ability of this protein to get translocated into the nucleus is diminished signifying the functional impairment of Nrf2, implying redox imbalance. Hence, it is understood that agents that boost the translocation of Nrf2 might be beneficial rather than those that quantitatively overexpress Nrf2 in treating DN. The deleterious effects of synthetic Nrf2 activators have instigated the researchers to search for phytochemicals that have ambient Nrf2 boosting ability with no side effects, one such phytochemical is Epigallocatechin-3-gallate (EGCG) and it has shown beneficial effects by preventing the progression of DN via influencing Nrf2/ARE pathway, however, the modus operandi is unclear, despite speculations. This study was designed to find out whether supplementation of Nrf2 booster like EGCG at the crucial time of Nrf2 dysfunction can mitigate the progression of DN. Based on the findings of the present study, it might be concluded that the beneficial effect of EGCG in mitigating DN is mediated mainly through its ability to activate the Nrf2/ARE signaling pathway at multiple stages i.e., by downregulating Keap1 and boosting the nuclear Nrf2 level by disrupting Nrf2-Keap1 interaction. These results emphasize that supplementation of EGCG might be more beneficial at an early stage of DN, where dysfunctional Nrf2 accumulation occurs, which should be further validated.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus , Nefropatias Diabéticas , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
7.
Cell Biochem Funct ; 38(3): 309-318, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926118

RESUMO

The aim is to test the hypothesis whether the cholesterol loaded lysosomes are capable of mediating lysosomal membrane permeabilization (LMP) during aging and to study the efficacy of epigallocatechin-3-gallate (EGCG) in preserving the lysosomal membrane stability. Aged rats were fed with high cholesterol diet (HCD) and treated with EGCG orally. Serum and tissue lipid status, cholesterol levels in lysosomal fraction, activities of lysosomal enzymes in lysosomal, and cytosolic fractions were measured. Transmission electron microscopic studies (TEM), oil red "O" (ORO) staining, and immunohistochemical analysis of oxidized low density lipoprotein (OxLDL) were carried out. Significant increase in serum, tissue lipid profile, and lysosomal cholesterol levels were observed in aged HCD-fed rats with a concomitant decrease in high density lipoprotein (HDL) levels. We also observed a significant increase in lipid accumulation in hepatocytes of aged HCD-fed rats by TEM, ORO, and immunohistochemical staining. Upon treatment with EGCG to aged HCD-fed animals, we found augmented levels of HDL with a concomitant decrease in lysosomal cholesterol levels and other lipoproteins. TEM studies and immunohistochemistry of OxLDL also showed a marked reduction in lipid deposition of hepatocytes. Thus, EGCG has preserved the lysosomal membrane stability in HCD stressed aged rats. SIGNIFICANCE OF THE STUDY: The research article is focused mainly on the effect of EGCG and its capability on mitigating the release of lysosomal enzymes in aged animals fed with HCD. The study signifies the cellular function of the organelle lysosome following administration of aged rats with HCD, which would make the readers to understand the action of EGCG and the interrelationship of both cholesterol and activity of lysosomes when cholesterol is loaded.


Assuntos
Catequina/análogos & derivados , Colesterol na Dieta/metabolismo , Fígado/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Envelhecimento , Animais , Antioxidantes/química , Catequina/farmacologia , Citosol/metabolismo , Suplementos Nutricionais , Hepatócitos/efeitos dos fármacos , Imuno-Histoquímica , Lipídeos/química , Lipoproteínas LDL/química , Lisossomos/enzimologia , Masculino , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Oxigênio/química , Ratos , Ratos Wistar
8.
Oxid Med Cell Longev ; 2019: 2761041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191797

RESUMO

Given the role of oxidative stress in PD pathogenesis and off-target side effects of currently available drugs, several natural phytochemicals seem to be promising in the management of PD. Here, we tested the hypothesis that scopoletin, an active principle obtained from Morinda citrifolia (MC), efficiently quenches oxidative stress through DJ-1/Nrf2 signaling and ameliorates rotenone-induced PD. Despite reducing oxidative stress, the administration of MC extract (MCE) has lessened protein aggregation as evident from decreased levels of nitrotyrosine and α-synuclein. In vitro studies revealed that scopoletin lessened rotenone-induced apoptosis in SH-SY5Y cells through preventing oxidative injury. Particularly, scopoletin markedly upregulated DJ-1, which then promoted the nuclear translocation of Nrf2 and transactivation of antioxidant genes. Furthermore, we found that scopoletin prevents the nuclear exportation of Nrf2 by reducing the levels of Keap1 and thereby enhancing the neuronal defense system. Overall, our findings suggest that scopoletin acts through DJ-1-mediated Nrf2 signaling to protect the brain from rotenone-induced oxidative stress and PD. Thus, we postulate that scopoletin could be a potential drug to treat PD.


Assuntos
Apoptose/efeitos dos fármacos , Morinda/química , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Escopoletina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Elementos de Resposta Antioxidante/fisiologia , Western Blotting , Citometria de Fluxo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos , Ratos
9.
J Agric Food Chem ; 65(36): 8028-8036, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28823168

RESUMO

Apoptosis is an active response of cells to altered microenvironments, which is characterized by cell shrinkage, chromatin condensation, and DNA fragmentation, in a variety of cell types such as renal epithelial cells, endothelial cells, mesangial cells, and podocytes. Hyperglycemia is among the microenvironmental factors that may facilitate apoptosis, which plays a decisive role in the initiation of diabetic nephropathy. Transforming growth factor-ß emerges as a powerful fibrogenic factor in the development of renal hypertrophy. Although, a number of potential treatment strategies exist for diabetic nephropathy, considering the ease of use and bioavailability, phytochemicals stands distinct as the preeminent option. EGCG, a green tea catechin is one such phytochemical which possesses hypoglycemic and antifibrotic activity. The present study aims to explore the potential of EGCG to prevent apoptosis in a high-fat diet and STZ induced diabetic nephropathy rats by assessing renal function, pro-fibrotic marker, and the expression of apoptotic and antiapoptotic proteins. Our results validate EGCG as a potential antiapoptotic agent evidently by improving renal function via down regulating TGF-ß, consequently ameliorating diabetic nephropathy. In accordance with this, EGCG might be regarded as a prospective therapeutic candidate in modulating diabetic nephropathy, thus being a promising treatment.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Nefropatias Diabéticas/tratamento farmacológico , Animais , Catequina/administração & dosagem , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Fibrose , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo
10.
Food Funct ; 7(2): 922-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26697948

RESUMO

Parkinson's disease is a progressive neurodegenerative movement disorder with the cardinal symptoms of bradykinesia, resting tremor, rigidity, and postural instability, which lead to abnormal movements and lack of activity, which in turn cause muscular damage. Even though studies have been carried out to elucidate the causative factors that lead to muscular damage in Parkinson's disease, apoptotic events that occur in the skeletal muscle and a therapeutical approach to culminate the muscular damage have not been extensively studied. Thus, this study evaluates the impact of rotenone-induced SNPc lesions on skeletal muscle apoptosis and the efficacy of an ethyl acetate extract of Morinda citrifolia in safeguarding the myocytes. Biochemical assays along with apoptotic markers studied by immunoblot and reverse transcription-polymerase chain reaction in the current study revealed that the supplementation of Morinda citrifolia significantly reverted alterations in both biochemical and histological parameters in rotenone-infused PD rats. Treatment with Morinda citrifolia also reduced the expression of pro-apoptotic proteins Bax, caspase-3 and caspase-9 and blocked the release of cytochrome c from mitochondria induced by rotenone. In addition, it augmented the expression of Bcl2 both transcriptionally and translationally. Thus, this preliminary study paves a way to show that the antioxidant and anti-apoptotic activities of Morinda citrifolia can be exploited to alleviate skeletal muscle damage induced by Parkinsonism.


Assuntos
Apoptose , Citocromos c/metabolismo , Músculo Esquelético/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rotenona/toxicidade , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Creatina Quinase/sangue , Citocromos c/antagonistas & inibidores , Modelos Animais de Doenças , L-Lactato Desidrogenase/sangue , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Morinda/química , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Exp Gerontol ; 57: 96-103, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24844145

RESUMO

SCOPE: Increased fat consumption in industrialized countries has resulted in hepatic steatosis that upregulates atherogenic aspirant genes, leading to atherosclerosis and mortality. Although extensive studies have been carried out to elucidate the atheroprotective efficacy of epigallocatechin-3-gallate (EGCG), the effect of EGCG on hepatic steatosis has not been studied comprehensively. Hence, the current study was designed to find out the effect of EGCG on hepatic events that prelude atherosclerosis with special reference to macrophage infiltration. METHODS AND RESULTS: Male albino rats of Wistar strain were used in this study. Basic biochemical assays along with the protein expression of CAMs, NF-κB, TNF-α and NF-AT were assayed in the current study. EGCG supplementation significantly reverted the alterations in both biochemical and histological parameters and is shown to reduce the TNF-α mediated NF-AT expression and thereby its downstream targets like ICAM-1 and E-selectin expression to a greater extent than NF-κB mediated downstream targets like VCAM-1 and P-selectin in hypercholesterolemic rat liver. CONCLUSION: Our results suggest that EGCG influences the early events of atherosclerosis that occur; thereby modulating the NF-AT pathway and thereby mitigating the hypercholesterolemic stress.


Assuntos
Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Animais , Antioxidantes/farmacologia , Catequina/farmacologia , Catequina/uso terapêutico , Moléculas de Adesão Celular/metabolismo , Colesterol na Dieta/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Masculino , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
12.
Food Funct ; 5(5): 916-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584116

RESUMO

Advanced age significantly increases cholesterol levels, however, when combined with a high cholesterol diet it not only leads to life-threatening conditions like atherosclerosis, but also plays a central role in the pathogenesis of hepatic damage and its complications. Even though extensive studies have been carried out to elucidate the causative factors that lead to hepatic steatosis associated with liver damage in young rats due to hypercholesterolemia, events that occur in aged rats where a different milieu is presented by up and down regulation of various genes co-existing, has not been extensively studied. Hence, this study comparatively evaluates the impact of hypercholesterolemic stress induced liver damage in young and aged rats and the efficacy of epigallocatechin-3-gallate to protect the liver in both young and aged rats with special reference to apoptosis. Moreover, the work has been designed to investigate whether aged rats act as better models for studying the efficacy of atheroprotective drugs. Male albino rats of the Wistar strain were used in this study. Basic biochemical assays along with apoptotic markers assayed in the current study revealed that treatment with EGCG significantly reverted the alterations in both biochemical and histological parameters in young and aged hypercholesterolemic rats when compared to their respective controls. However, the extent of reversion was far superior in young rats, when compared to aged rats. EGCG reduced hepatic Bax expression in both young and aged hypercholesterolemic rats. On the other hand, Bcl-2 expression was up regulated significantly in young hypercholesterolemic rats, but not in aged hypercholesterolemic rats on treatment with EGCG. This throws light on the efficacy of the treatment differing in young and aged rats as well; atheroprotective drugs shall be tested for their efficacy in aged hypercholesterolemic models.


Assuntos
Catequina/análogos & derivados , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores Etários , Animais , Apoptose/efeitos dos fármacos , Catequina/administração & dosagem , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/metabolismo , Fígado/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar
13.
J Pharm Pharmacol ; 64(10): 1472-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22943178

RESUMO

OBJECTIVES: Oxidative stress is recognized as a key element responsible for the development of age-related pathologies. A declining endogenous defence system during senescence dictates the need for supplementation with exogenous antioxidants through diet. Hesperidin is a naturally occurring flavonone present in citrus fruits and has been shown to have many biological properties, including antioxidant activity. We investigated whether hesperidin supplementation could be valuable in protecting cardiac tissue of aged rats against age-related increase in oxidative stress, as well as the mechanism by which it can boost the antioxidant status of the cell. METHODS: The activity of antioxidant enzymes, mRNA expression of Nrf2, protein levels of superoxide dismutase and catalase were measured using standard protocols. KEY FINDINGS: Hesperidin treatment effectively protected aged rat heart by increasing the activity of enzymic antioxidants. Hesperidin upregulated the protein levels of nuclear factor erythroid 2-related factor 2, which is responsible for maintaining the antioxidant status of the cell. CONCLUSIONS: Hesperidin could be useful in protecting cardiomyocytes against age-related increase in oxidative stress mediated by Nrf2 upregulation.


Assuntos
Antioxidantes/farmacologia , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Regulação para Cima/efeitos dos fármacos , Fatores Etários , Envelhecimento , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Coração/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...