Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 191: 106643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631413

RESUMO

The human oral cavity is colonized by a diverse microbial community, which includes both native and transient colonizers. The microbial composition is crucial for maintaining oral homeostasis, but due to overgrowth or imbalances of these microbial communities, dysbiosis can occur. There is a lack of understanding of the research of native and transient colonizers in the oral cavity of the Indian subpopulation Therefore, in our present study, we explored the role and prevalence of transient and native colonizers between healthy and comorbid oral diseased human individuals. Culture-dependent techniques and culture-independent 16S r DNA metagenomic analyses were employed to isolate and study the interactions of native and transient colonizers from human oral samples. Among the 66 human individuals of both healthy and comorbid individuals, the most abundant isolate was found to be Bacillus amyloliquefaciens MCC 4424. In addition, the more prevalent culturable isolate from the healthy samples was Streptococcus salivarius MTCC 13009, whereas in comorbid samples Staphylococcus pasteuri MTCC 13076, Rothia dentocariosa MTCC 13010 and Pseudomonas aeruginosa MTCC 13077 were prevalent to a greater extent. 16S rDNA metagenomic analyses revealed the prevalence and abundance of genera such as Bacteroidetes and Proteobacteria in healthy individuals; consequently, Fusobacteria and Firmicutes were observed mostly in comorbid individuals. The significant differences in bacterial population density were observed in terms of the Shannon index (p = 0.5145) and Simpson index (p = 0.9061) between the healthy and comorbid groups. B. amyloliquefaciens MCC 4424 exhibits antagonistic behavior when grown as a dual-species with native and transient colonizers. This result is very consistent with the findings of antibiofilm studies using confocal laser scanning microscopy, which revealed a significant reduction in biofilm biovolume (73 %) and maximum thickness (80 %) and an increase in the rough coefficient of biofilms (30 %). Our data suggested that B. amyloliquefaciens MCC 4424 can be a native colonizer of Indian sub-populations. It may act as a novel candidate for oral healthcare applications and greatly aids in the regulation of transient species in the oral cavity.


Assuntos
Bactérias , Boca , RNA Ribossômico 16S , Humanos , Boca/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Índia/epidemiologia , DNA Bacteriano/genética , Microbiota/genética , Metagenômica , Adulto , Masculino , Feminino , Disbiose/microbiologia , Adulto Jovem , Pessoa de Meia-Idade , Comorbidade
2.
PLoS One ; 12(8): e0182164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771533

RESUMO

The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), on Dendritic Cell (DC) activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli). Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50) that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s) that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1) and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.


Assuntos
Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Porphyromonas gingivalis/imunologia , Animais , Antibiose , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citocinas/análise , Citocinas/metabolismo , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Escherichia coli/genética , Feminino , Fusobacterium/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1/análise , Interleucina-1/metabolismo , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Porphyromonas gingivalis/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/microbiologia
3.
J Biol Chem ; 292(2): 477-487, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27899451

RESUMO

Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a dynamic intracellular signaling molecule that plays a central role in the biofilm life cycle. Current methodologies for the quantification of c-di-GMP are typically based on chemical extraction, representing end point measurements. Chemical methodologies also fail to take into consideration the physiological heterogeneity of the biofilm and thus represent an average c-di-GMP concentration across the entire biofilm. To address these problems, a ratiometric, image-based quantification method has been developed based on expression of the green fluorescence protein (GFP) under the control of the c-di-GMP-responsive cdrA promoter (Rybtke, M. T., Borlee, B. R., Murakami, K., Irie, Y., Hentzer, M., Nielsen, T. E., Givskov, M., Parsek, M. R., and Tolker-Nielsen, T. (2012) Appl. Environ. Microbiol. 78, 5060-5069). The methodology uses the cyan fluorescent protein (CFP) as a biomass indicator and the GFP as a c-di-GMP reporter. Thus, the CFP/GFP ratio gives the effective c-di-GMP per biomass. A binary mask was applied to alleviate background fluorescence, and fluorescence was calibrated against known c-di-GMP concentrations. Using flow cells for biofilm formation, c-di-GMP showed a non-uniform distribution across the biofilm, with concentrated hot spots of c-di-GMP. Additionally, c-di-GMP was found to be localized at the outer boundary of mature colonies in contrast to a uniform distribution in early stage, small colonies. These data demonstrate the application of a method for the in situ, real time quantification of c-di-GMP and show that the amount of this biofilm-regulating second messenger was dynamic with time and colony size, reflecting the extent of biofilm heterogeneity in real time.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiologia , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
4.
PLoS One ; 11(10): e0164155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27701473

RESUMO

Protein phosphorylation has a major role in controlling the life-cycle and infection stages of bacteria. Proteome-wide occurrence of S/T/Y phosphorylation has been reported for many prokaryotic systems. Previously, we reported the phosphoproteome of Pseudomonas aeruginosa and Pseudomonas putida. In this study, we show the role of S/T phosphorylation of one motility protein, FliC, in regulating multiple surface-associated phenomena of P. aeruginosa PAO1. This is the first report of occurrence of phosphorylation in the flagellar protein, flagellin FliC in its highly conserved N-terminal NDO domain across several Gram negative bacteria. This phosphorylation is likely a well-regulated phenomenon as it is growth phase dependent in planktonic cells. The absence of phosphorylation in the conserved T27 and S28 residues of FliC, interestingly, did not affect swimming motility, but affected the secretome of type 2 secretion system (T2SS) and biofilm formation of PAO1. FliC phosphomutants had increased levels and activities of type 2 secretome proteins. The secretion efficiency of T2SS machinery is associated with flagellin phosphorylation. FliC phosphomutants also formed reduced biofilms at 24 h under static conditions and had delayed biofilm dispersal under dynamic flow conditions, respectively. The levels of type 2 secretome and biofilm formation under static conditions had an inverse correlation. Hence, increase in type 2 secretome levels was accompanied by reduced biofilm formation in the FliC phosphomutants. As T2SS is involved in nutrient acquisition and biofilm dispersal during survival and spread of P. aeruginosa, we propose that FliC phosphorylation has a role in ecological adaptation of this opportunistic environmental pathogen. Altogether, we found a system of phosphorylation that affects key surface related processes such as proteases secretion by T2SS, biofilm formation and dispersal.


Assuntos
Flagelina/genética , Flagelina/metabolismo , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/fisiologia , Sistemas de Secreção Tipo II/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Mutação , Fosforilação , Proteômica/métodos , Pseudomonas aeruginosa/metabolismo , Serina/metabolismo , Treonina/metabolismo
5.
Elife ; 52016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26880544

RESUMO

A common strategy by which bacterial pathogens reside in humans is by shifting from a virulent lifestyle, (systemic infection), to a dormant carrier state. Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-component regulatory system to exist inside Salmonella-containing vacuoles in the macrophage, as well as to persist as asymptomatic biofilms in the gallbladder. Here we present evidence that SsrB, a transcriptional regulator encoded on the SPI-2 pathogenicity-island, determines the switch between these two lifestyles by controlling ancestral and horizontally-acquired genes. In the acidic macrophage vacuole, the kinase SsrA phosphorylates SsrB, and SsrB~P relieves silencing of virulence genes and activates their transcription. In the absence of SsrA, unphosphorylated SsrB directs transcription of factors required for biofilm formation specifically by activating csgD (agfD), the master biofilm regulator by disrupting the silenced, H-NS-bound promoter. Anti-silencing mechanisms thus control the switch between opposing lifestyles.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Fatores de Transcrição/metabolismo , Ilhas Genômicas
6.
ISME J ; 10(4): 846-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26405829

RESUMO

Diversity has a key role in the dynamics and resilience of communities and both interspecific (species) and intraspecific (genotypic) diversity can have important effects on community structure and function. However, a critical and unresolved question for understanding the ecology of a community is to what extent these two levels of diversity are functionally substitutable? Here we show, for a mixed-species biofilm community composed of Pseudomonas aeruginosa, P. protegens and Klebsiella pneumoniae, that increased interspecific diversity reduces and functionally substitutes for intraspecific diversity in mediating tolerance to stress. Biofilm populations generated high percentages of genotypic variants, which were largely absent in biofilm communities. Biofilms with either high intra- or interspecific diversity were more tolerant to SDS stress than biofilms with no or low diversity. Unexpectedly, genotypic variants decreased the tolerance of biofilm communities when experimentally introduced into the communities. For example, substituting P. protegens wild type with its genotypic variant within biofilm communities decreased SDS tolerance by twofold, apparently due to perturbation of interspecific interactions. A decrease in variant frequency was also observed when biofilm populations were exposed to cell-free effluents from another species, suggesting that extracellular factors have a role in selection against the appearance of intraspecific variants. This work demonstrates the functional substitution of inter- and intraspecific diversity for an emergent property of biofilms. It also provides a potential explanation for a long-standing paradox in microbiology, in which morphotypic variants are common in laboratory grown biofilm populations, but are rare in diverse, environmental biofilm communities.


Assuntos
Biofilmes , Klebsiella pneumoniae/fisiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas/fisiologia , Adaptação Biológica , Biodiversidade , Resistência a Múltiplos Medicamentos , Genótipo , Pseudomonas/classificação
7.
Front Microbiol ; 6: 851, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347731

RESUMO

Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl, and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl, and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06%) than its wild-type (WT) parent (2.44%). In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4 and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel, or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the WT PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35-40% of P. aeruginosa, which was significantly higher than the WT (5-20%). Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%). Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such communities.

8.
PLoS Pathog ; 11(4): e1004827, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25884622

RESUMO

Neutrophils form the first line of host defense against bacterial pathogens. They are rapidly mobilized to sites of infection where they help marshal host defenses and remove bacteria by phagocytosis. While splenic neutrophils promote marginal zone B cell antibody production in response to administered T cell independent antigens, whether neutrophils shape humoral immunity in other lymphoid organs is controversial. Here we investigate the neutrophil influx following the local injection of Staphylococcus aureus adjacent to the inguinal lymph node and determine neutrophil impact on the lymph node humoral response. Using intravital microscopy we show that local immunization or infection recruits neutrophils from the blood to lymph nodes in waves. The second wave occurs temporally with neutrophils mobilized from the bone marrow. Within lymph nodes neutrophils infiltrate the medulla and interfollicular areas, but avoid crossing follicle borders. In vivo neutrophils form transient and long-lived interactions with B cells and plasma cells, and their depletion augments production of antigen-specific IgG and IgM in the lymph node. In vitro activated neutrophils establish synapse- and nanotube-like interactions with B cells and reduce B cell IgM production in a TGF-ß1 dependent manner. Our data reveal that neutrophils mobilized from the bone marrow in response to a local bacterial challenge dampen the early humoral response in the lymph node.


Assuntos
Imunidade Humoral/imunologia , Linfonodos/imunologia , Infiltração de Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Transferência Adotiva , Animais , Separação Celular , Ensaio de Imunoadsorção Enzimática , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Staphylococcus aureus/imunologia
9.
ISME J ; 8(4): 894-907, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24152718

RESUMO

Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1-2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.


Assuntos
Biofilmes/crescimento & desenvolvimento , Bactérias Gram-Negativas/fisiologia , Interações Microbianas/fisiologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/fisiologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Dodecilsulfato de Sódio/farmacologia , Estresse Fisiológico , Tobramicina/farmacologia
10.
Commun Integr Biol ; 5(3): 275-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22896791

RESUMO

Phenol-soluble modulins (PSMs) are amphipathic peptides produced by staphylococci that have multiple functions in pathogenesis. For example, they may function as cytotoxins and pro-inflammatory agents. Additionally, in a recent study we demonstrated that Staphylococcus aureus PSMs structure biofilms and cause dissemination during biofilm infection. Based on those results suggesting a surfactant-like mechanism by which PSMs work, we here propose that all PSM functions in pathogenesis arose from an original role in non-pathogenic surface colonization. This original role may have included overcoming surface tension in environments of strongly varying hydrophobicity and emulsification of hydrophobic molecules for use as food sources.

11.
Proc Natl Acad Sci U S A ; 109(4): 1281-6, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232686

RESUMO

Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofilm structuring factors in the premier biofilm-forming pathogen Staphylococcus aureus. We provide evidence that all known PSM classes participate in structuring and detachment processes. Specifically, absence of PSMs in isogenic S. aureus psm deletion mutants led to strongly impaired formation of biofilm channels, abolishment of the characteristic waves of biofilm detachment and regrowth, and loss of control of biofilm expansion. In contrast, induced expression of psm loci in preformed biofilms promoted those processes. Furthermore, PSMs facilitated dissemination from an infected catheter in a mouse model of biofilm-associated infection. Moreover, formation of the biofilm structure was linked to strongly variable, quorum sensing-controlled PSM expression in biofilm microenvironments, whereas overall PSM production remained constant to ascertain biofilm homeostasis. Our study describes a mechanism of biofilm structuring in molecular detail, and the general principle (i.e., quorum-sensing controlled expression of surfactants) seems to be conserved in several bacteria, despite the divergence of the respective biofilm-structuring surfactants. These findings provide a deeper understanding of biofilm development processes, which represents an important basis for strategies to interfere with biofilm formation in the environment and human disease.


Assuntos
Toxinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Tensoativos/metabolismo , Animais , Camundongos , Microscopia Confocal , Staphylococcus aureus/metabolismo , Staphylococcus aureus/ultraestrutura
12.
Indian J Urol ; 27(1): 137-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21716878

RESUMO

We report a rare case of seminal vesicle malignancy (primitive neuro ectodermal tumor) in a 40-year-old male patient. He was treated with enbloc resection of the tumor and ureteric reimplantation. In view of the rarity of this entity, management of these tumors should be individualized.

13.
Nat Rev Microbiol ; 8(7): 471-80, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20514044

RESUMO

Growth of oral bacteria in situ requires adhesion to a surface because the constant flow of host secretions thwarts the ability of planktonic cells to grow before they are swallowed. Therefore, oral bacteria evolved to form biofilms on hard tooth surfaces and on soft epithelial tissues, which often contain multiple bacterial species. Because these biofilms are easy to study, they have become the paradigm of multispecies biofilms. In this Review we describe the factors involved in the formation of these biofilms, including the initial adherence to the oral tissues and teeth, cooperation between bacterial species in the biofilm, signalling between the bacteria and its role in pathogenesis, and the transfer of DNA between bacteria. In all these aspects distance between cells of different species is integral for oral biofilm growth.


Assuntos
Biofilmes , Metagenoma , Boca/microbiologia , Humanos , Doenças Periodontais/microbiologia , Saliva/microbiologia
14.
J Bacteriol ; 192(12): 2965-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20154130

RESUMO

Human dental biofilm communities comprise several species, which can interact cooperatively or competitively. Bacterial interactions influence biofilm formation, metabolic changes, and physiological function of the community. Lactic acid, a common metabolite of oral bacteria, was measured in the flow cell effluent of one-, two- and three-species communities growing on saliva as the sole nutritional source. We investigated single-species and multispecies colonization by using known initial, early, middle, and late colonizers of enamel. Fluorescent-antibody staining and image analysis were used to quantify the biomass in saliva-fed flow cells. Of six species tested, only the initial colonizer Actinomyces oris exhibited significant growth. The initial colonizer Streptococcus oralis produced lactic acid but showed no significant growth. The early colonizer Veillonella sp. utilized lactic acid in two- and three-species biofilm communities. The biovolumes of all two-species biofilms increased when Veillonella sp. was present as one of the partners, indicating that this early colonizer promotes mutualistic community development. All three-species combinations exhibited enhanced growth except one, i.e., A. oris, Veillonella sp., and the middle colonizer Porphyromonas gingivalis, indicating specificity among three-species communities. Further specificity was seen when Fusobacterium nucleatum (a middle colonizer), Aggregatibacter actinomycetemcomitans (a late colonizer), and P. gingivalis did not grow with S. oralis in two-species biofilms, but inclusion of Veillonella sp. resulted in growth of all three-species combinations. We propose that commensal veillonellae use lactic acid for growth in saliva and that they communicate metabolically with initial, early, middle, and late colonizers to establish multispecies communities on enamel.


Assuntos
Biofilmes/crescimento & desenvolvimento , Esmalte Dentário/microbiologia , Veillonella/fisiologia , Actinomyces/fisiologia , Meios de Cultura , Placa Dentária/microbiologia , Fusobacterium/fisiologia , Porphyromonas/fisiologia , Saliva/microbiologia , Streptococcus/fisiologia
15.
Indian J Orthop ; 43(4): 403-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19838393

RESUMO

BACKGROUND: The major neurovascular involvement and large primary tumors are indication of amputation. The present study is an attempt to explore the feasibility of a limb salvage surgery in extremity sarcoma cases with major vessel involvement. Oncological outcomes and surgery-related morbidities are compared with those reported in literature. MATERIALS AND METHODS: A retrospective review of all limb salvage surgeries done in our department between 2005 and 2008 was done and four cases of extremity sarcoma of lower limb involving femoral vessels analyzed. Interpretation of data from these cases, along with review of literature, is done. RESULTS: In all these cases a wide monobloc excision was done adhering to oncological principles. This required resection of superficial femoral artery alone in two cases, resection of superficial femoral artery along with common femoral vein and femoral nerve in another, and of common femoral vein alone in yet another. Reconstruction was done in all these cases with reversed long saphenous vein graft. Histopathology of resected margins was free of tumor in all the four patients. One patient developed local recurrence and one developed distant metastsis. Two were disease free for one year with good functional limb, one has been disease-free for three years and another was disease-free at two years, after which he defaulted further follow-up. One patient developed arterial blowout which required ligation of common femoral artery which resulted in gangrene of the limb. He underwent amputation. CONCLUSION: Major neurovascular involvement in extremity sarcoma is not considered a contraindication for limb salvage surgery. Review of literature also supports our view. Post-operative wound related complications are more in this group of patients. However, long term functional outcome is good. Literature suggests a good long term local control after vascular resection and reconstruction.

16.
J Bacteriol ; 191(22): 6804-11, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749049

RESUMO

Porphyromonas gingivalis is present in dental plaque as early as 4 h after tooth cleaning, but it is also associated with periodontal disease, a late-developing event in the microbial successions that characterize daily plaque development. We report here that P. gingivalis ATCC 33277 is remarkable in its ability to interact with a variety of initial, early, middle, and late colonizers growing solely on saliva. Integration of P. gingivalis into multispecies communities was investigated by using two in vitro biofilm models. In flow cells, bacterial growth was quantified using fluorescently conjugated antibodies against each species, and static biofilm growth on saliva-submerged polystyrene pegs was analyzed by quantitative real-time PCR using species-specific primers. P. gingivalis could not grow as a single species or together with initial colonizer Streptococcus oralis but showed mutualistic growth when paired with two other initial colonizers, Streptococcus gordonii and Actinomyces oris, as well as with Veillonella sp. (early colonizer), Fusobacterium nucleatum (middle colonizer), and Aggregatibacter actinomycetemcomitans (late colonizer). In three-species flow cells, P. gingivalis grew with Veillonella sp. and A. actinomycetemcomitans but not with S. oralis and A. actinomycetemcomitans. Also, it grew with Veillonella sp. and F. nucleatum but not with S. oralis and F. nucleatum, indicating that P. gingivalis and S. oralis are not compatible. However, P. gingivalis grew in combination with S. gordonii and S. oralis, demonstrating its ability to overcome the incompatibility when cultured with a second initially colonizing species. Collectively, these data help explain the observed presence of P. gingivalis at all stages of dental plaque development.


Assuntos
Biofilmes/crescimento & desenvolvimento , Porphyromonas gingivalis/crescimento & desenvolvimento , Actinomyces/crescimento & desenvolvimento , Aggregatibacter actinomycetemcomitans/crescimento & desenvolvimento , Esmalte Dentário/microbiologia , Fusobacterium nucleatum/crescimento & desenvolvimento , Humanos , Reação em Cadeia da Polimerase , Saliva/microbiologia , Streptococcus gordonii/crescimento & desenvolvimento , Streptococcus oralis/crescimento & desenvolvimento , Veillonella/crescimento & desenvolvimento
17.
Infect Immun ; 77(9): 3542-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564387

RESUMO

Human oral bacterial pathogens grow in attached multispecies biofilm communities. Unattached cells are quickly removed by swallowing. Therefore, surface attachment is essential for growth, and we investigated multispecies community interactions resulting in mutualistic growth on saliva as the sole nutritional source. We used two model systems, saliva-coated transferable solid-phase polystyrene pegs (peg biofilms) and flow cells with saliva-coated glass surfaces. Fluorescent antibody staining and image analysis were used to quantify the biomass in flow cells, and quantitative real-time PCR with species-specific primers was used to quantify the biomass in peg biofilms. Veillonella sp. strain PK1910, Aggregatibacter actinomycetemcomitans JP2, and Fusobacterium nucleatum ATCC 10953 were unable to grow as single species in flow cells. Only A. actinomycetemcomitans grew after 36 h when peg biofilms remained submerged in saliva from the time of inoculation. Mixed-species coaggregates were used for two- and three-species inoculation. The biomass in two-species biofilms increased in both systems when Veillonella sp. strain PK1910 was present as one of the partners. Enhanced growth of all strains was observed in three-species biofilms in flow cells. Interestingly, in flow cells F. nucleatum and A. actinomycetemcomitans exhibited mutualism, and, although F. nucleatum was unable to grow with either of the other species in the peg system, F. nucleatum stimulated the growth of Veillonella sp. and together these two organisms increased the total biomass of A. actinomycetemcomitans in three-species peg biofilms. We propose that mutualistic two-species and multispecies oral biofilm communities form in vivo and that mutualism between commensal veillonellae and late colonizing pathogens, such as aggregatibacteria, contributes to the development of periodontal disease.


Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Biofilmes , Fusobacterium nucleatum/fisiologia , Saliva/microbiologia , Veillonella/fisiologia , Humanos , Reação em Cadeia da Polimerase
18.
Appl Environ Microbiol ; 75(10): 3250-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19286780

RESUMO

Formation of dental plaque is a developmental process involving initial and late colonizing species that form polymicrobial communities. Fusobacteria are the most numerous gram-negative bacteria in dental plaque, but they become prevalent after the initial commensal colonizers, such as streptococci and actinomyces, have established communities. The unusual ability of these bacteria to coaggregate with commensals, as well as pathogenic late colonizers, has been proposed to facilitate colonization by the latter organisms. We investigated the integration of Fusobacterium nucleatum into multispecies communities by employing two in vitro models with saliva as the sole nutritional source. In flow cell biofilms, numbers of cells were quantified using fluorescently conjugated antibodies against each species, and static biofilms were analyzed by quantitative real-time PCR (q-PCR) using species-specific primers. Unable to grow as single-species biofilms, F. nucleatum grew in two-species biofilms with Actinomyces naeslundii but not with Streptococcus oralis. However, enhanced growth of fusobacteria was observed in three-species biofilms, indicating that there was multispecies cooperation. Importantly, these community dynamics yielded an 18-fold increase in the F. nucleatum biomass between 4 h and 18 h in the flow cell inoculated with three species. q-PCR analysis of static biofilms revealed that maximum growth of the three species occurred at 24 h to 36 h. Lower numbers of cells were observed at 48 h, suggesting that saliva could not support higher cell densities as the sole nutrient. Integration of F. nucleatum into multispecies commensal communities was evident from the interdigitation of fusobacteria in coaggregates with A. naeslundii and S. oralis and from the improved growth of fusobacteria, which was dependent on the presence of A. naeslundii.


Assuntos
Actinomyces/crescimento & desenvolvimento , Fusobacterium nucleatum/crescimento & desenvolvimento , Saliva/microbiologia , Streptococcus oralis/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Biomassa , Contagem de Colônia Microbiana/métodos , Placa Dentária/microbiologia , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...