Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917967

RESUMO

Mixed-cation metal halide perovskites have shown remarkable progress in photovoltaic applications with high power conversion efficiencies. However, to achieve large-scale deployment of this technology, efficiencies must be complemented by long-term durability. The latter is limited by external factors, such as exposure to humidity and air, which lead to the rapid degradation of the perovskite materials and devices. In this work, we study the mechanisms causing Cs and formamidinium (FA)-based halide perovskite phase transformations and stabilization during moisture and air exposure. We use in situ X-ray scattering, X-ray photoelectron spectroscopy, and first-principles calculations to study these chemical interactions and their effects on structure. We unravel a surface reaction pathway involving the dissolution of FAI by water and iodide oxidation by oxygen, driving the Cs/FA ratio into thermodynamically unstable regions, leading to undesirable phase transformations. This work demonstrates the interplay of bulk phase transformations with surface chemical reactions, providing a detailed understanding of the degradation mechanism and strategies for designing durable and efficient perovskite materials.

2.
J Phys Chem C Nanomater Interfaces ; 127(32): 15969-15977, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609378

RESUMO

We explore the application of excitation correlation spectroscopy to detect nonlinear photophysical dynamics in two distinct semiconductor classes through time-integrated photoluminescence and photocurrent measurements. In this experiment, two variably delayed femtosecond pulses excite the semiconductor, and the time-integrated photoluminescence or photocurrent component arising from the nonlinear dynamics of the populations induced by each pulse is measured as a function of inter-pulse delay by phase-sensitive detection with a lock-in amplifier. We focus on two limiting materials systems with contrasting optical properties: a prototypical lead-halide perovskite (LHP) solar cell, in which primary photoexcitations are charge photocarriers, and a single-component organic-semiconductor diode, which features Frenkel excitons as primary photoexcitations. The photoexcitation dynamics perceived by the two detection schemes in these contrasting systems are distinct. Nonlinear-dynamic contributions in the photoluminescence detection scheme arise from contributions to radiative recombination in both materials systems, while photocurrent arises directly in the LHP but indirectly following exciton dissociation in the organic system. Consequently, the basic photophysics of the two systems are reflected differently when comparing measurements with the two detection schemes. Our results indicate that photoluminescence detection in the LHP system provides valuable information about trap-assisted and Auger recombination processes, but that these processes are convoluted in a nontrivial way in the photocurrent response and are therefore difficult to differentiate. In contrast, the organic-semiconductor system exhibits more directly correlated responses in the nonlinear photoluminescence and photocurrent measurements, as charge carriers are secondary excitations only generated through exciton dissociation processes. We propose that bimolecular annihilation pathways mainly contribute to the generation of charge carriers in single-component organic semiconductor devices. Overall, our work highlights the utility of excitation correlation spectroscopy in modern semiconductor materials research, particularly in the analysis of nonlinear photophysical processes, which are deterministic for their electronic and optical properties.

3.
Chem Mater ; 35(11): 4181-4191, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332682

RESUMO

Preferred crystallographic orientation in polycrystalline films is desirable for efficient charge carrier transport in metal halide perovskites and semiconductors. However, the mechanisms that determine the preferred orientation of halide perovskites are still not well understood. In this work, we investigate crystallographic orientation in lead bromide perovskites. We show that the solvent of the precursor solution and organic A-site cation strongly affect the preferred orientation of the deposited perovskite thin films. Specifically, we show that the solvent, dimethylsulfoxide, influences the early stages of crystallization and induces preferred orientation in the deposited films by preventing colloidal particle interactions. Additionally, the methylammonium A-site cation induces a higher degree of preferred orientation than the formamidinium counterpart. We use density functional theory to show that the lower surface energy of the (100) plane facets in methylammonium-based perovskites, compared to the (110) planes, is the reason for the higher degree of preferred orientation. In contrast, the surface energy of the (100) and (110) facets is similar for formamidinium-based perovskites, leading to lower degree of preferred orientation. Furthermore, we show that different A-site cations do not significantly affect ion diffusion in bromine-based perovskite solar cells but impact ion density and accumulation, leading to increased hysteresis. Our work highlights the interplay between the solvent and organic A-site cation which determine crystallographic orientation and plays a critical role in the electronic properties and ionic migration of solar cells.

4.
ACS Appl Mater Interfaces ; 14(30): 34269-34280, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35561234

RESUMO

Thermal evaporation is a promising deposition technique to scale up perovskite solar cells (PSCs) to large areas, but the lack of understanding of the mechanisms that lead to high-quality evaporated methylammonium lead triiodide (MAPbI3) films gives rise to devices with efficiencies lower than those obtained by spin coating. This work investigates the crystalline properties of MAPbI3 deposited by the thermal coevaporation of PbI2 and MAI, where the MAI evaporation rate is controlled by setting different temperatures for the MAI source and the PbI2 deposition rate is controlled with a quartz crystal microbalance (QCM). Using grazing incident wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD), we identify the formation of a secondary orthorhombic phase (with a Pnma space group) that appears at MAI source temperatures below 155 °C. With synchrotron-based X-ray fluorescence (XRF) microscopy, we show that the changes in crystalline phases are not necessarily due to changes in stoichiometry. The films show a stochiometric composition when the MAI source is heated between 140 to 155 °C, and the samples become slightly MAI rich at 165 °C. Increasing the MAI temperature beyond 165 °C introduces an excess of MAI in the film, which promotes the formation of films with low crystallinity that contain low-dimensional perovskites. When they are incorporated in solar cells, the films deposited at 165 °C result in the champion power conversion efficiency, although the presence of a small amount of low-dimensional perovskite may lead to a lower open-circuit voltage. We hypothesize that the formation of secondary phases in evaporated films limits the performance of PSCs and that their formation can be suppressed by controlling the MAI source temperature, bringing the film toward a phase-pure tetragonal structure. Control of the phases during perovskite evaporation is therefore crucial to obtain high-performance solar cells.

5.
Nano Lett ; 18(11): 6915-6923, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30278610

RESUMO

Metal-halide perovskites are promising lasing materials for the realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low-temperature processing, leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through the costly and inefficient hybrid integration of III-V semiconductors. Until now, however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography (and, therefore, on existing semiconductor manufacturing infrastructure) has been established. Here, the first methylammonium lead iodide perovskite microdisc lasers monolithically integrated into silicon nitride PICs by such a top-down process are presented. The lasers show a record low lasing threshold of 4.7 µJcm-2 at room temperature for monolithically integrated lasers, which are complementary metal-oxide-semiconductor compatible and can be integrated in the back-end-of-line processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...